
Efficient Collision Detection Among Objects in
Arbitrary Motion Using Multiple Shape Representations

Yoshifumi KITAMURA, Haruo TAKEMURA*, Narendra AHUJAt and Fumio KlSHlNO

ATR Communication Systems Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan

kita mu ra @at r-sw.a t r.co.j p

Abstract
W e propose a n e f i c i en t method f o r detecting potential
collisions among multiple objects with arbitrary mo t ion
(translation and rotation) in three-dimensional (3-0) s-
pace. T h e method i s useful f o r on-line monitoring and path
planning in a 3-0 environment i n which there are multi-
ple independently-moving objects. T h e method consists of
two m a i n stages. In the f i r s t , coarse stage, a n approx-
imate test i s performed to identify interfering objects in
thd entire workspace using octree representation of object
shapes. In the second, f i ne stage, polyhedral representa-
t ion of object shapes is used to more accurately identijy
a n y object parts tha t might cause interference and colli-
sions. For this purpose, specific pairs of faces belonging to
a n y of the interfering objects f ound i n the f irst stage are
tested, thus performing detailed computation o n a reduced
amoun t o f data. Experimental results, which demonstrate
the e f i c i ency of the proposed collision detection method,
are given.

1 Introduction
Interference or collision detection methods using

polyhedral shape representation [l] [a] [3] are com-
mon. They yield relatively accurate results, but must
test all combinations of all the faces and edges of ob-
jects in the environment for interference.. Therefore,
the computational cost increases with the number and
shape complexity of objects.

Using octree shape representation, interference a-
mong objects can be detected by traversing their oc-
trees in parallel [4]. Octrees can represent the details
of object shapes to different degrees using different
numbers of levels, but the computational cost is pro-
portional only to the actual number of nodes visited.
An octree with even limited depth is useful for approx-
imately identifying object parts causing interference.

This paper proposes a method for detecting inter-
ference and potential collisions among objects with
arbitrary motion (translation and rotation) in 3-D s-
pace using octree and polyhedral shape representa-

*Currently with the Nara Institute of Science and Technol-

twas visiting professor from the University of Jllinois at
ogy, Japan

Urbana-Champaign, USA.

1051-465V94 $04.00 0 1994 IEEE

tions. Collisions are checked at discrete time instants,
but collisions between time instants are not missed.
Every collision detection involves all objects in the
environment, and determines the pairs of faces that
are likely to collide. The experimental results show
the efficiency of the proposed method for non-convex
objects.

2 Shape Representations for Collision

2.1 Polyhedral Shape Representation
Polyhedral shape representation is one of the most

common shape representations. Interference between
polyhedral objects is detected by testing all combina-
tions of faces and edges. The average time complexity
for the test for n objects) is O(n2 . E F) , where E , F

ject. Therefore, the computational cost is high for a
large number of objects. However, if the number of
faces or edges that are likely to collide can be restrict-
ed, the cost may be acceptable and the method may
be useful.

2.2 Octree Shape Representation
The octree represents an object shape by recursive-

ly subdividing it into octants. A tree node is labeled
black (white) if it is completely contained within an
object (free space); otherwise, the node is labeled gray.

Using octree representation, interference among ob-
jects can be detected by traversing trees in parallel
[4]. Since the time taken is proportional to the actual
number of nodes visited, the average time complexity
for detecting interferences among n objects is O (K n) ,
where the average number of nodes in a tree is Ii.
2.3 Model Generation

One way to acquire the required octree and poly-
hedral models is to derive them from range data of
an object as it moves. Another method is to main-
tain the polyhedral representation of an object under
motion, which is easy, and to convert the polyhedral
model into an octree. For a convex object, this can be
easily achieved by testing the positional relations (in-
terior, exterior or intersection) between each face and

Detection

are the num b er of edges and faces in the average ob-

390

octree node. For example, the method in [5] generates
the octree of non-convex objects by collecting the oc-
tree nodes corresponding to each polygonal face of an
object using its quadtree representation of its planar
projection.

The algorithm used here generates an octree from
the polyhedral representation of general non-convex)
objects by using the point inclusion test b ased on the
Jordan curve theorem for polygons [6]. The method
is suitable for parallel implementation.

3 Hybrid Collision Detection
This section describes an efficient method, which

first performs an approximate test to identify interfer-
ing objects in the entire workspace and then performs
a more accurate test to identify the object parts caus-
ing interference/collisions by using octree and polyhe-
dral representations, respectively.

3.1 Outline
Figure 1 shows the control flow used in this method.

Suppose there are n objects in the workspace, and that
for each object both the octree and polyhedral repre-
sentations are known. Both of these representations
for each object are updated periodically (at discrete
time instants t i -1 , t i , t i+l, . . .) using the ob-
served object motion parameters. To avoid collisions,
future object positions and orientations are extrapo-
lated using these motion parameters. Potential colli-
sions are then checked using the extrapolated repre-
sentations to detect the interference at each discrete
time instant t i , using the following steps.

updating octree updating polyhedral

Interfering

extraction of faces

.................. 4 ; I / 1

Figure 1: Proposed method for collision detection.

3.2 Procedure

It is assumed that the motion of each object during
each time interval is small compared to the sampling
interval. It is also assumed that the objects are rigid,
and their motions between successive time instants are
translation and rotation.

3.2.1 Updating Representations

Both the octree and polyhedral shape representation-
s are updated periodically for each object using the
observed object motion parameters. Note that updat-
ing polyhedral representations is relatively straightfor-
ward. An algorithm capable of updating the octree of
a three-dimensional object for arbitrary rotation and
translation is described in [7]. This algorithm moves
each of the black leaf nodes and constructs subtrees
corresponding to the displaced black nodes. It tests
the intersections of moved cubes with octree tessel-
lation. Since octree and polyhedral shape representa-
tions are updated independently for each object in this
application, differences occur between the two repre-
sentations. A 2-D example of translation is shown in
Figure 2. An object located at the position shown in
(a) moves toward the right. For the initial state in (a),
nodes a and c are black. When a 1/4-voxel movement
toward the right occurs, for example, a poly onal ob-
ject (polyhedral object in 3-D) moves as in fb), while
the octree nodes b and d continue to be white because
their centers are outside the displaced black cubes a
and c that have been moved by 1/4-voxel. When the
motion is more than 1 /2 voxel, node b or d becomes
black.

Therefore, in the algorithm used here, a partially-
occupied voxel is colored black if any part of its bound-
ary is on or inside a displaced black cube. Though this
reduces the computational efficiency since the number
of black nodes increases, it is necessary so as not to
miss possible collisions. An accelerated method that
generates octrees from polyhedral shape representa-
tions for each processing cycle will lessen this problem.

I I I I I a' I

moves -
I I ' object

I c' I
I object

Figure 2: An example of white nodes occupied par-
tially by an object

391

3.2.2 Approximat e Interference Detection

Interference in the entire workspace is detected by
traversing the objects' octrees in parallel. If black n-
ode exists whose corresponding node in another tree is
also black, these nodes are considered to be interfering.
The traversal is performed down to a predetermined
lowest level. At this lowest level, for safety, any pair
of corresponding gray nodes is considered t80 be inter-
fering. After the traversal is finished, all interfering
nodes and corresponding objects are identified. This
determines the objects and their approximate parts
that are likely to collide in the near future.

Using Octrees

3.2.3 Extraction of Faces in Interfering Nodes

The faces of objects that intersect with their octree
nodes are extracted (marked as interfering with other
objects). For each such interfering node in an objec-
t's octree, the coordinates of the eight vertices of the
corresponding cube C are substituted in the equation
of the plane T of each face F of the interferin object.
If all vertices do not lead to the same sign fpositive
or negative) for the value obtained after substitution,
then a face F is judged to be possibly causing the
interference detected by octree representation. To de-
termine if the face actually does cause interference,
the polygon S of the intersection between C and T
is found. A simple two-dimensional interference de-
tection is then done for S and F. If an intersection
is found, F is labeled as interfering; otherwise, it is
labeled as noninterfering.

3.2.4 Accurate Collision Detection Using

The faces identified above are checked for collisions.
At any time instant t i , the possibility of a collision
between ti and ti+l is tested by considering the vol-
ume expected to be swept by each face during the
interval [ti, ti+l] (see Figure 3) . This is how colli-
sions between discrete time instants are avoided. To
be conservative, collision is assumed if these volumes
intersect even though such intersections are a neces-
sary, but not sufficient, condition for the occurrence
of collisions.

For each moving face A , the convex hulls V: of a set
of vertex points of At' (i.e. a:, ai ' , a:, ,..) and Ati+l
(i.e. a,"', a ~ " ' , a;+' ,...) (chapter 3 in [SI) expected
to be swept by face A during the interval [ti, ti+l] are
com uted. For each face Btc with which intersection
of A'' is to be tested during the interval [ti, t i+l], the
convex hulls V2 of a set of vertex points of Bt' and
Pi+' are computed. Here, face A and face B at time
t = ti are specified by At% and Bt*, respectively.

Next, the intersection between Vjt and V: is test-
ed. An intersection is detected by testing whether one
of the following positional relationships of all combi-
nations of faces and edges exists: both endpoints of
an edge lie on the same side of the plane containing
the face (Edge l), an edge intersects the outside of the

Polyhedra

t

face plane (Ed e a) , or an edge intersects the inside of
the face plane ?Edge 3). An intersection is detected in
the case of Edge 3.

This identifies all pairs of faces that are expected
to collide during the time interval
for collisions among faces extracte

& + I] by testing

the octree in which interference has been found. This
method is not efficient when the number of vertices of
each face is large. In this case, a more efficient method
such as the Muller-Preparata method in chapter 7 of

ight be useful to test for intersection of convex
Figure 3 shows the simplest case (trian-

gles).

a

Figure 3: Collision detection between moving faces
identified by octree representation as potentially col-
liding.

4 Experiments
This section is concerned with the performance

of the proposed collision detection algorithm and
presents experimental results.

4.1 Performance Evaluation
For performance evaluation, a sphere-like object

represented by triangular patches was used. An oc-
tree shape representation of this object is shown in
Figure 4. Spheres were selected because of their orien-
tation invariance. The octree representation hierarchy
is considered to have 4 and 5 levels in this figure, and
the root node of the octree corresponds to the entire
workspace.

4.1.1 Experiments with Two Moving Objects
Having a Different Numbers of Faces

Interference and collision detection between two iden-
tical objects (spheres) represented by several kinds of
polyhedral shape representations, each having a dif-
ferent number of planar patches, was tested. Each
sphere has a corresponding octree shape representa-
tion as shown in Figure 4. The initial positions, direc-
tions and motions of the centers of the two objects (A
and B) are shown in Table 1. Here, the units are equal
to the length of the side of the smallest octree cube
(or voxel), i.e. level 0 (depth d = 4). The workspace is
divided into M 3 (M = 24) voxels at the lowest level,

392

(a) 8 faces

(b) 168 faces

(c) 728 faces

Figure 4: Examples of experimental objects represent-
ed using polyhedra (left column), $-level octrees (cen-
ter) and 5-level octrees (right column).

and the diameters of the objects are 3.8 voxels, with
respect to 4-level octrees.

During every processing cycle, after the positions
of the octree and polyhedral shape representations of
each object had been updated, an approximate test
was performed to identify interfering objects in the
entire workspace using octree representation of objec-
t shapes. If any interfering nodes were found, the
polyhedral representation of object shapes was used
to more accurately identify any object parts caus-
ing interference and collisions. The computation time
(CPU time) of each processing cycle was measured on
a workstation (Silicon Graphics CRIMSON with 96M
memory).

The results for two moving objects with 24, 80 and
168 triangular patches are shown in Figure 5. In the
case of a collision between two spheres with 168 faces,
no interference between octree nodes could be found
until time t = 6 (cycles), Between times t = 6 and
t = 62, interfering octree nodes were found but no
faces could be detected in these nodes; therefore] the
computational cost was relatively small. Once faces
in interfering nodes were found at t = 62, more com-
putation time was needed to test for collisions among
them. Though faces in interfering nodes were found,
they did not collide until t = 116. Finally, at t = 116,
collisions among detected faces were found, and this
experiment was terminated. At the last stage of col-
lision detection, about 1.28 seconds was needed to i-
dentify 14 pairs of faces from 31 interfering octree n-
odes that were going to collide. Here, a test was done

for collisions among the faces identified by each node
of the octree for which interference had been found.
Collisions were checked at discrete time instants, but
collisions between time instants were not missed.

On the other hand, the computation time for colli-
sion detection without any constraints caused by oc-
tree shape representations, i.e., using only polyhedral
shape representation, between two objects with 168
faces, was 41 seconds. The polyhedral method tests
for collisions among all combinations of faces at every
time instants; therefore, considerable computation is
necessary throughout. For collision detection between
spheres, constraints such as the distance between cen-
ters against the sum of diameters, or other parametric
methods might be useful for eliminating the candidate
faces. However, since these types of constraints are not
always good for concave or complex objects, the pro-
posed method was compared with the polyhedral rep-
resentation collision detection algorithm, which does
not use the above constraints.

The scale is very different for the results of each
experiment shown in Figure 5 ; however, the shapes of
the graphs are very similar. In Figure 6, the compu-
tation time for the last stage of the proposed collision
detection method, which requires maximum compu-
tation, is compared with that of the conventional col-
lision detection method using only polyhedral shape
representation. The experimental results show the ef-
ficiency of the proposed method when the number of
object faces increases.

computation tlme (s)

1 E8 faces

1 .o

, EO faces

0.8 ;
0.2

0

24 faces I/-.-
,-, _ _

0 50 100
t (cycles)

Figure 5: Computation time for each processing cycle
of collision detection for two identical objects with 24,
80 and 168 faces.

393

Table 1: Initial positions, directions and motions given to the objects (unit: 4-level octree)

translation
(wozelslcycle)

(0.015, 0.0075, 0.01)
(-0.015, -0.0075, -0.01)

(-0.0005, -0.0005, -0.0005)
(-0.0005, -0.0005, -0.0005)
(0.0005, -0.0005, -0.0005)

(0.0005, -0.0005, -0.0005)
(0.0005, -0.0005, -0.0005)

(0.0005, -0.0005, -0.0005)

initial positions rotation
(degreeslcycle)
(0.0, 0.25 0.0)
(0.0, 0.25, 0.0)
(0.05, 0.1, 0.15)
(0.1 0.15, 0.05)
(0.15, 0.05, 0.1)

(-0.1, -0.15, -0.05)
(-0.05, -0.1, -0.15)

(-0.15, -0.05, -0.1)

(woxels)
(2.5, 2.5, 2.5)

70

(8.5, 6.5, 6.5j
(13.5, 13.5, 6.0)
(6.0, 2.5, 13.5)
(2.5, 13.5, 2.5)
(13.5, 8.0, 13.5)
(13.5, 2.5, 2.5)
(6.0, 13.5, 13.5)

i i i polyhedral method

B

I

proposed method
I

of objects, the scale is very different for each exper-
iment; however, the shapes of the graphs are quite
similar. Figure 7 shows these results. In this figure,
the computation time for the last stage which requires
maximum computation is compared to that of the col-
lision detection method using only polyhedral shape
representation. The experimental results show the ef-
ficiency of the proposed method when the number of
objects increases.

50

computation time (s)

0 200 400 600 800 1000
number of faces

Figure 6: Computation time for each processing cy-
cle of collision detection between two identical objects
against the number of object faces

4.1.2 Experiments with Multiple Moving Ob-
jects

Several instances of an object were used to obtain a
multiple moving object. The experimental object had
168 faces in a polyhedral representation, and the oc-
tree representation hierarchy had 4 levels. Constant
translation and rotation comprise the motion of each
object A, B, C, D, ...; and only object A and B collide.
The initial position and motion of each object is listed
in Table 1. The computation time for each process-
ing cycle was measured on a workstation as described
above.

In the results of experiments for various numbers

Figure 7: Computation time for each processing cycle
of collision detection among multiple moving objects
with 168 faces against the number of objects

4.2 Experiments with a Complex Object
The proposed algorithm was applied to a practical

environment. A space shuttle represented by triangu-
lar patches and an octree shape representation of this
object generated by the method of [6] shown in Figure
8 was used.

Interference and collisions among n (n = 2 , 3 , 4 , 5)
identical objects (space shuttles were detected. The
initial positions of the objects 2 from A to E) in the
experimental workspace are shown in Figure 9. Con-
stant translation and rotation movements were giv-
en to each object, and only object A and B collided.

394

Here, a level-5 octree was used. In this experiment,
the faces of polyhedral shape representations are all
triangles, and the octree shape representation of Fig-
ure 8 (b) was used by integrating its octree root node
into the level-1 (depth 4) octree node whose root node
corresponds to the entire space.

(a) polyhedra (528 faces)

Figure 8: The space shuttle represented using (a) poly-
hedra and (b) octree representations.

(b) octree

The results from multiple moving objects (space
shuttles) with 528 triangular patches were shown in
Figure 10. Until time t = 71 (cycles), no interference
could be found; therefore, the computation cost was
relatively low. Once interfering nodes were found at
t = 71, more computation time was needed to detect
faces in the interfering nodes and to test for collisions
among them. Though interfering nodes were found,
the detected faces did not collide until t = 123. Fi-
nally, at t = 123, collisions among detected faces were
found, and the experiment was terminated just before
the collision shown in Figure 11. This Figure shows
a snapshot from the viewpoint in Figure 9. In the
last stage, about 1.2 seconds were needed to identify
14 pairs of faces from 62 interfering octree nodes that
were going to collide. Every collision detection in-
volved all objects in the environment, and determined
the pairs of faces that were likely collide.

On the other hand, the computation time for colli-
sion detection for two space shuttles without using an
octree, i.e., using only polyhedral shape representa-
tion, was 415 seconds. In an environment that includ-
ed five moving objects, the computation for each time
instant of the polyhedral method required 2470 sec-
onds, while the proposed method required only 1.56
seconds for the last stage which requires maximum
computation. In this case, the proposed method de-
tects collisions in about 0.06% of the time required by
the polyhedral method. Though the proposed method
is efficient compared to the polyhedral method, this
is slow for on-line (real time) monitoring and path
planning. However, since the method can be easily
implemented on a parallel processor, real-time colli-
sion detection in a 3-D environment containing mul-
tiple independently-moving complicated objects could
be achieved.

5 Summary
This paper has presented an efficient method for

detecting interference and potential collisions among
multiple objects. Collisions are checked at discrete
time instants, but collisions between time instants are

not missed. Every collision detection involves all ob-
jects in the environment, and determines the pairs of
faces that are likely collide. The experimental results
have shown the efficiency of the proposed method, es-
pecially when there are multiple, complicated objects
with arbitrary motion in an environment.

An accelerated method that generates octrees from
polyhedral shape representation for each processing
cycle will lessen the problem of updating octrees. This
approach makes it possible to detect collisions among
deformable objects.

It might be possible to make a more efficient al-
orithm by using a special octree ([9] or chapter 5 of bl) which associates (using pointers) the black nodes

of octrees with the faces of polyhedral shape represen-
tation that are contained inside of or intersect with
them. Real-time collision detection in a 3-D environ-
ment could be achieved by implementing the proposed
method on a parallel computer.

References
[l] Boyse, John W. Interference decision among

solids and surfaces. Communications of the ACM,

[2] Canny, John. Collision decision for moving poly-
IEEE Transactions on PAMI, Vol. 8 ,

[3] Kawabe, S., Okano, A., and Shimada, K. Col-
lision detection among moving objects in simu-
lation. Robotics Research, Vol. 4, pp. 489-496,
1988.

[4] Ahuja, N., Chien, R. T., and Bridwell, N . Inter-
ference detection and collision avoidance among
three dimensional objects. In International Con-
ference on Artificial Intelligence, pp. 44-48, 1980.

[5] Tamminen, Markku and Samet, Hanan. Efficient
octree conversion by connectivity labeling. Com-
puter Graphics, Vol. 18, No. 3, pp. 43-51, 1984.

[6] Kitamura, Y., Bayle, M., Takemura, H., and K-
ishino, F. Generation of an octree from a polyhe-
dral shape representation. In IEICE Conference
1994. D-604, 1994. (in Japanese).

Octree of objects in
arbitrary motion: Representation and efficiency.
Computer Vision, Graphics, and Image Process-
ing, Vol. 39, No. 2, pp. 167-185, 1987.

[8] Preparata, Franco P. and Shamos, Michael
Ian. Computational geometry, an introduction.
Springer-Verlag, 1988.

[9] Ayala, D., Brunet, P., Juan, R., and Navazo, I.
Object representation by means of nonminimal
division quadtrees and octrees. ACM Transac-
tions on Graphics, Vol. 4, No. 1, pp. 41-59, 1985.

[lo] Hanan Samet. The design and analysis of spatial
data structures. Addison-Wesley, 1990.

Vol. 22, NO. 1, pp. 3-9, 1979.

hedra.
NO. 2, pp. 200-209, 1986.

[7] Weng, J . and Ahuja, N .

395

computation time (s)
1.0 I I I

i - C
1.4

(a) octree 0
0 60 100

t (cycles)

Figure 10: Computation time for each processing cycle
of collision detection among objects (space shuttle) -
a: two objects, b: three objects, c: four objects, d:
five objects. Arrows indicate the end point of each
graph.

(b) polyhedra

Figure 9: Experimental space including five objects
(space shuttles) at initial positions.

Figure 11: A snapshot of the experiment when colli-
sions are detected.

396

