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Abstract 
W e  propose a n  e f i c i en t  method f o r  detecting potential  
collisions among multiple objects with arbitrary mo t ion  
(translation and rotation) in three-dimensional (3-0) s- 
pace. T h e  method i s  useful f o r  on-line monitoring and path  
planning in a 3-0  environment  i n  which there are multi-  
ple independently-moving objects. T h e  method consists of 
two m a i n  stages. In the f i r s t ,  coarse stage, a n  approx- 
imate  test  i s  performed to  identify interfering objects in 
thd entire workspace using octree representation of object 
shapes. In the second, f i ne  stage, polyhedral representa- 
t ion  of object shapes is used to  more  accurately identijy 
a n y  object parts tha t  might cause interference and colli- 
sions. For this purpose,  specific pairs of faces belonging to  
a n y  of the interfering objects f ound  i n  the f irst  stage are 
tested, thus  performing detailed computation o n  a reduced 
amoun t  o f  data. Experimental results, which demonstrate 
the e f i c i ency  of the proposed collision detection method, 
are given. 

1 Introduction 
Interference or collision detection methods using 

polyhedral shape representation [l] [a] [3] are com- 
mon. They yield relatively accurate results, but must 
test all combinations of all the faces and edges of ob- 
jects in the environment for interference.. Therefore, 
the computational cost increases with the number and 
shape complexity of objects. 

Using octree shape representation, interference a- 
mong objects can be detected by traversing their oc- 
trees in parallel [4]. Octrees can represent the details 
of object shapes to  different degrees using different 
numbers of levels, but the computational cost is pro- 
portional only to the actual number of nodes visited. 
An octree with even limited depth is useful for approx- 
imately identifying object parts causing interference. 

This paper proposes a method for detecting inter- 
ference and potential collisions among objects with 
arbitrary motion (translation and rotation) in 3-D s- 
pace using octree and polyhedral shape representa- 
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tions. Collisions are checked at discrete time instants, 
but collisions between time instants are not missed. 
Every collision detection involves all objects in the 
environment, and determines the pairs of faces that 
are likely to collide. The experimental results show 
the efficiency of the proposed method for non-convex 
objects. 

2 Shape Representations for Collision 

2.1 Polyhedral Shape Representation 
Polyhedral shape representation is one of the most 

common shape representations. Interference between 
polyhedral objects is detected by testing all combina- 
tions of faces and edges. The average time complexity 
for the test for n objects) is O(n2 . E F ) ,  where E ,  F 

ject. Therefore, the computational cost is high for a 
large number of objects. However, if the number of 
faces or edges that are likely to collide can be restrict- 
ed, the cost may be acceptable and the method may 
be useful. 

2.2 Octree Shape Representation 
The octree represents an object shape by recursive- 

ly subdividing it into octants. A tree node is labeled 
black (white) if it is completely contained within an 
object (free space); otherwise, the node is labeled gray. 

Using octree representation, interference among ob- 
jects can be detected by traversing trees in parallel 
[4]. Since the time taken is proportional to the actual 
number of nodes visited, the average time complexity 
for detecting interferences among n objects is O ( K n ) ,  
where the average number of nodes in a tree is Ii. 
2.3 Model Generation 

One way to acquire the required octree and poly- 
hedral models is to derive them from range data of 
an object as it moves. Another method is to main- 
tain the polyhedral representation of an object under 
motion, which is easy, and to convert the polyhedral 
model into an octree. For a convex object, this can be 
easily achieved by testing the positional relations (in- 
terior, exterior or intersection) between each face and 
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octree node. For example, the method in [5] generates 
the octree of non-convex objects by collecting the oc- 
tree nodes corresponding to  each polygonal face of an 
object using its quadtree representation of its planar 
projection. 

The algorithm used here generates an octree from 
the polyhedral representation of general non-convex) 
objects by using the point inclusion test b ased on the 
Jordan curve theorem for polygons [6]. The method 
is suitable for parallel implementation. 

3 Hybrid Collision Detection 
This section describes an efficient method, which 

first performs an approximate test to identify interfer- 
ing objects in the entire workspace and then performs 
a more accurate test to  identify the object parts caus- 
ing interference/collisions by using octree and polyhe- 
dral representations, respectively. 

3.1 Outline 
Figure 1 shows the control flow used in this method. 

Suppose there are n objects in the workspace, and that 
for each object both the octree and polyhedral repre- 
sentations are known. Both of these representations 
for each object are updated periodically (at discrete 
time instants . . . .  t i -1 ,  t i ,  t i+l,  . .  .) using the ob- 
served object motion parameters. To avoid collisions, 
future object positions and orientations are extrapo- 
lated using these motion parameters. Potential colli- 
sions are then checked using the extrapolated repre- 
sentations to  detect the interference at each discrete 
time instant t i ,  using the following steps. 

updating octree updating polyhedral 

Interfering 

extraction of faces 

.................. 4 ; I /  1 

Figure 1: Proposed method for collision detection. 

3.2 Procedure 

It is assumed that the motion of each object during 
each time interval is small compared to the sampling 
interval. It is also assumed that the objects are rigid, 
and their motions between successive time instants are 
translation and rotation. 

3.2.1 Updating Representations 

Both the octree and polyhedral shape representation- 
s are updated periodically for each object using the 
observed object motion parameters. Note that updat- 
ing polyhedral representations is relatively straightfor- 
ward. An algorithm capable of updating the octree of 
a three-dimensional object for arbitrary rotation and 
translation is described in [7]. This algorithm moves 
each of the black leaf nodes and constructs subtrees 
corresponding to the displaced black nodes. It tests 
the intersections of moved cubes with octree tessel- 
lation. Since octree and polyhedral shape representa- 
tions are updated independently for each object in this 
application, differences occur between the two repre- 
sentations. A 2-D example of translation is shown in 
Figure 2. An object located at the position shown in 
(a) moves toward the right. For the initial state in (a), 
nodes a and c are black. When a 1/4-voxel movement 
toward the right occurs, for example, a poly onal ob- 
ject (polyhedral object in 3-D) moves as in fb), while 
the octree nodes b and d continue to be white because 
their centers are outside the displaced black cubes a 
and c that have been moved by 1/4-voxel. When the 
motion is more than 1 /2  voxel, node b or d becomes 
black. 

Therefore, in the algorithm used here, a partially- 
occupied voxel is colored black if any part of its bound- 
ary is on or inside a displaced black cube. Though this 
reduces the computational efficiency since the number 
of black nodes increases, it is necessary so as not to  
miss possible collisions. An accelerated method that 
generates octrees from polyhedral shape representa- 
tions for each processing cycle will lessen this problem. 

I I I I I a' I 

moves - 
I I ' object 

I c' I 
I object 

Figure 2: An example of white nodes occupied par- 
tially by an object 
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3.2.2 Approximat e Interference Detection 

Interference in the entire workspace is detected by 
traversing the objects' octrees in parallel. If black n- 
ode exists whose corresponding node in another tree is 
also black, these nodes are considered to be interfering. 
The traversal is performed down to a predetermined 
lowest level. At this lowest level, for safety, any pair 
of corresponding gray nodes is considered t80 be inter- 
fering. After the traversal is finished, all interfering 
nodes and corresponding objects are identified. This 
determines the objects and their approximate parts 
that are likely to collide in the near future. 

Using Octrees 

3.2.3 Extraction of Faces in Interfering Nodes 

The faces of objects that intersect with their octree 
nodes are extracted (marked as interfering with other 
objects). For each such interfering node in an objec- 
t's octree, the coordinates of the eight vertices of the 
corresponding cube C are substituted in the equation 
of the plane T of each face F of the interferin object. 
If all vertices do not lead to the same sign fpositive 
or negative) for the value obtained after substitution, 
then a face F is judged to be possibly causing the 
interference detected by octree representation. To de- 
termine if the face actually does cause interference, 
the polygon S of the intersection between C and T 
is found. A simple two-dimensional interference de- 
tection is then done for S and F. If an intersection 
is found, F is labeled as interfering; otherwise, it is 
labeled as noninterfering. 

3.2.4 Accurate Collision Detection Using 

The faces identified above are checked for collisions. 
At any time instant t i ,  the possibility of a collision 
between ti and ti+l is tested by considering the vol- 
ume expected to be swept by each face during the 
interval [ti,  ti+l] (see Figure 3) .  This is how colli- 
sions between discrete time instants are avoided. To 
be conservative, collision is assumed if these volumes 
intersect even though such intersections are a neces- 
sary, but not sufficient, condition for the occurrence 
of collisions. 

For each moving face A ,  the convex hulls V: of a set 
of vertex points of At' (i.e. a:, ai ' ,  a:, ,..) and Ati+l 
(i.e. a,"', a ~ " ' ,  a;+' ,...) (chapter 3 in [SI) expected 
to be swept by face A during the interval [ti,  ti+l] are 
com uted. For each face Btc with which intersection 
of A'' is to be tested during the interval [ti,  t i+l],  the 
convex hulls V2 of a set of vertex points of Bt' and 
Pi+' are computed. Here, face A and face B at time 
t = ti are specified by At% and Bt*,  respectively. 

Next, the intersection between Vjt and V: is test- 
ed. An intersection is detected by testing whether one 
of the following positional relationships of all combi- 
nations of faces and edges exists: both endpoints of 
an edge lie on the same side of the plane containing 
the face (Edge l), an edge intersects the outside of the 
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face plane (Ed e a ) ,  or an edge intersects the inside of 
the face plane ?Edge 3). An intersection is detected in 
the case of Edge 3. 

This identifies all pairs of faces that are expected 
to collide during the time interval 
for collisions among faces extracte 

& + I ]  by testing 

the octree in which interference has been found. This 
method is not efficient when the number of vertices of 
each face is large. In this case, a more efficient method 
such as the Muller-Preparata method in chapter 7 of 

ight be useful to test for intersection of convex 
Figure 3 shows the simplest case (trian- 

gles). 

a 

Figure 3: Collision detection between moving faces 
identified by octree representation as potentially col- 
liding. 

4 Experiments 
This section is concerned with the performance 

of the proposed collision detection algorithm and 
presents experimental results. 

4.1 Performance Evaluation 
For performance evaluation, a sphere-like object 

represented by triangular patches was used. An oc- 
tree shape representation of this object is shown in 
Figure 4. Spheres were selected because of their orien- 
tation invariance. The octree representation hierarchy 
is considered to have 4 and 5 levels in this figure, and 
the root node of the octree corresponds to the entire 
workspace. 

4.1.1 Experiments with Two Moving Objects 
Having a Different Numbers of Faces 

Interference and collision detection between two iden- 
tical objects (spheres) represented by several kinds of 
polyhedral shape representations, each having a dif- 
ferent number of planar patches, was tested. Each 
sphere has a corresponding octree shape representa- 
tion as shown in Figure 4. The initial positions, direc- 
tions and motions of the centers of the two objects (A 
and B) are shown in Table 1. Here, the units are equal 
to the length of the side of the smallest octree cube 
(or voxel), i.e. level 0 (depth d = 4). The workspace is 
divided into M 3  ( M  = 24) voxels at the lowest level, 
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(a) 8 faces 

(b) 168 faces 

(c) 728 faces 

Figure 4: Examples of experimental objects represent- 
ed using polyhedra (left column), $-level octrees (cen- 
ter) and 5-level octrees (right column). 

and the diameters of the objects are 3.8 voxels, with 
respect to 4-level octrees. 

During every processing cycle, after the positions 
of the octree and polyhedral shape representations of 
each object had been updated, an approximate test 
was performed to identify interfering objects in the 
entire workspace using octree representation of objec- 
t shapes. If any interfering nodes were found, the 
polyhedral representation of object shapes was used 
to more accurately identify any object parts caus- 
ing interference and collisions. The computation time 
(CPU time) of each processing cycle was measured on 
a workstation (Silicon Graphics CRIMSON with 96M 
memory). 

The results for two moving objects with 24, 80 and 
168 triangular patches are shown in Figure 5. In the 
case of a collision between two spheres with 168 faces, 
no interference between octree nodes could be found 
until time t = 6 (cycles), Between times t = 6 and 
t = 62, interfering octree nodes were found but no 
faces could be detected in these nodes; therefore] the 
computational cost was relatively small. Once faces 
in interfering nodes were found at t = 62, more com- 
putation time was needed to test for collisions among 
them. Though faces in interfering nodes were found, 
they did not collide until t = 116. Finally, at t = 116, 
collisions among detected faces were found, and this 
experiment was terminated. At the last stage of col- 
lision detection, about 1.28 seconds was needed to i- 
dentify 14 pairs of faces from 31 interfering octree n- 
odes that were going to  collide. Here, a test was done 

for collisions among the faces identified by each node 
of the octree for which interference had been found. 
Collisions were checked at discrete time instants, but 
collisions between time instants were not missed. 

On the other hand, the computation time for colli- 
sion detection without any constraints caused by oc- 
tree shape representations, i.e., using only polyhedral 
shape representation, between two objects with 168 
faces, was 41 seconds. The polyhedral method tests 
for collisions among all combinations of faces at every 
time instants; therefore, considerable computation is 
necessary throughout. For collision detection between 
spheres, constraints such as the distance between cen- 
ters against the sum of diameters, or other parametric 
methods might be useful for eliminating the candidate 
faces. However, since these types of constraints are not 
always good for concave or complex objects, the pro- 
posed method was compared with the polyhedral rep- 
resentation collision detection algorithm, which does 
not use the above constraints. 

The scale is very different for the results of each 
experiment shown in Figure 5 ;  however, the shapes of 
the graphs are very similar. In Figure 6, the compu- 
tation time for the last stage of the proposed collision 
detection method, which requires maximum compu- 
tation, is compared with that of the conventional col- 
lision detection method using only polyhedral shape 
representation. The experimental results show the ef- 
ficiency of the proposed method when the number of 
object faces increases. 

computation tlme (s) 

1 E8 faces 

1 .o 

, EO faces 

0.8 ; 
0.2 

0 

24 faces I/-.- 
,-, _ _  

0 50 100 
t (cycles) 

Figure 5: Computation time for each processing cycle 
of collision detection for two identical objects with 24, 
80 and 168 faces. 
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Table 1: Initial positions, directions and motions given to  the objects (unit: 4-level octree) 

translation 
(wozelslcycle) 

(0.015, 0.0075, 0.01) 
(-0.015, -0.0075, -0.01) 

(-0.0005, -0.0005, -0.0005) 
(-0.0005, -0.0005, -0.0005) 
(0.0005, -0.0005, -0.0005) 

(0.0005, -0.0005, -0.0005) 
(0.0005, -0.0005, -0.0005) 

(0.0005, -0.0005, -0.0005) 

initial positions rotation 
(degreeslcycle) 
(0.0, 0.25 0.0) 
(0.0, 0.25, 0.0) 
(0.05, 0.1, 0.15) 
(0.1 0.15, 0.05) 
(0.15, 0.05, 0.1) 

(-0.1, -0.15, -0.05) 
(-0.05, -0.1, -0.15) 

(-0.15, -0.05, -0.1) 

(woxels) 
(2.5, 2.5, 2.5) 

70 

(8.5, 6.5, 6.5j 
(13.5, 13.5, 6.0) 
(6.0, 2.5, 13.5) 
(2.5, 13.5, 2.5) 
(13.5, 8.0, 13.5) 
(13.5, 2.5, 2.5) 
(6.0, 13.5, 13.5) 

i i  i polyhedral method 

B 

I 

proposed method 
I 

of objects, the scale is very different for each exper- 
iment; however, the shapes of the graphs are quite 
similar. Figure 7 shows these results. In this figure, 
the computation time for the last stage which requires 
maximum computation is compared to  that of the col- 
lision detection method using only polyhedral shape 
representation. The experimental results show the ef- 
ficiency of the proposed method when the number of 
objects increases. 

50 

computation time (s) 

0 200 400 600 800 1000 
number of faces 

Figure 6: Computation time for each processing cy- 
cle of collision detection between two identical objects 
against the number of object faces 

4.1.2 Experiments with Multiple Moving Ob- 
jects 

Several instances of an object were used to  obtain a 
multiple moving object. The experimental object had 
168 faces in a polyhedral representation, and the oc- 
tree representation hierarchy had 4 levels. Constant 
translation and rotation comprise the motion of each 
object A,  B, C, D, ...; and only object A and B collide. 
The initial position and motion of each object is listed 
in Table 1. The computation time for each process- 
ing cycle was measured on a workstation as described 
above. 

In the results of experiments for various numbers 

Figure 7: Computation time for each processing cycle 
of collision detection among multiple moving objects 
with 168 faces against the number of objects 

4.2 Experiments with a Complex Object 
The proposed algorithm was applied to a practical 

environment. A space shuttle represented by triangu- 
lar patches and an octree shape representation of this 
object generated by the method of [6] shown in Figure 
8 was used. 

Interference and collisions among n ( n  = 2 , 3 , 4 , 5 )  
identical objects (space shuttles were detected. The 
initial positions of the objects 2 from A to E) in the 
experimental workspace are shown in Figure 9. Con- 
stant translation and rotation movements were giv- 
en to each object, and only object A and B collided. 
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Here, a level-5 octree was used. In this experiment, 
the faces of polyhedral shape representations are all 
triangles, and the octree shape representation of Fig- 
ure 8 (b) was used by integrating its octree root node 
into the level-1 (depth 4) octree node whose root node 
corresponds to the entire space. 

(a) polyhedra (528 faces) 

Figure 8: The space shuttle represented using (a) poly- 
hedra and (b) octree representations. 

(b) octree 

The results from multiple moving objects (space 
shuttles) with 528 triangular patches were shown in 
Figure 10. Until time t = 71 (cycles), no interference 
could be found; therefore, the computation cost was 
relatively low. Once interfering nodes were found at 
t = 71, more computation time was needed to  detect 
faces in the interfering nodes and to  test for collisions 
among them. Though interfering nodes were found, 
the detected faces did not collide until t = 123. Fi- 
nally, at t = 123, collisions among detected faces were 
found, and the experiment was terminated just before 
the collision shown in Figure 11. This Figure shows 
a snapshot from the viewpoint in Figure 9. In the 
last stage, about 1.2 seconds were needed to identify 
14 pairs of faces from 62 interfering octree nodes that 
were going to  collide. Every collision detection in- 
volved all objects in the environment, and determined 
the pairs of faces that were likely collide. 

On the other hand, the computation time for colli- 
sion detection for two space shuttles without using an 
octree, i.e., using only polyhedral shape representa- 
tion, was 415 seconds. In an environment that includ- 
ed five moving objects, the computation for each time 
instant of the polyhedral method required 2470 sec- 
onds, while the proposed method required only 1.56 
seconds for the last stage which requires maximum 
computation. In this case, the proposed method de- 
tects collisions in about 0.06% of the time required by 
the polyhedral method. Though the proposed method 
is efficient compared to  the polyhedral method, this 
is slow for on-line (real time) monitoring and path 
planning. However, since the method can be easily 
implemented on a parallel processor, real-time colli- 
sion detection in a 3-D environment containing mul- 
tiple independently-moving complicated objects could 
be achieved. 

5 Summary 
This paper has presented an efficient method for 

detecting interference and potential collisions among 
multiple objects. Collisions are checked at discrete 
time instants, but collisions between time instants are 

not missed. Every collision detection involves all ob- 
jects in the environment, and determines the pairs of 
faces that are likely collide. The experimental results 
have shown the efficiency of the proposed method, es- 
pecially when there are multiple, complicated objects 
with arbitrary motion in an environment. 

An accelerated method that generates octrees from 
polyhedral shape representation for each processing 
cycle will lessen the problem of updating octrees. This 
approach makes it possible to  detect collisions among 
deformable objects. 

It might be possible to  make a more efficient al- 
orithm by using a special octree ([9] or chapter 5 of bl) which associates (using pointers) the black nodes 

of octrees with the faces of polyhedral shape represen- 
tation that are contained inside of or intersect with 
them. Real-time collision detection in a 3-D environ- 
ment could be achieved by implementing the proposed 
method on a parallel computer. 
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Figure 10: Computation time for each processing cycle 
of collision detection among objects (space shuttle) - 
a: two objects, b: three objects, c: four objects, d: 
five objects. Arrows indicate the end point of each 
graph. 

(b) polyhedra 

Figure 9: Experimental space including five objects 
(space shuttles) at initial positions. 

Figure 11: A snapshot of the experiment when colli- 
sions are detected. 
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