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ABSTRACT 
We present an approach for estimating and segmenting 

the displacement field between two frames. Our method 
is based on local affine (first-order) approximation of the 
displacement field which is derived under the assumption 
of locally rigid motion. Each distinct motion is represented 
i n  the image plane by a distinct set of values of affine co- 
efficients. All sets of values supported by the feature loca- 
tions in two frames are identified by exhaustive coarse-to- 
fine search. The integrated use of multiple features (points, 
regions and lines) increases the probability of finding well- 
supported sets. The sets of coefficients thus obtained are 
used to describe the DF. Two experimental results with real 
images are presented to demonstrate the feasibility of our 
approach. 

1. INTRODUCTION 

Estimation and segmentation of the displacement field (DF) 
between two image frames is one of the most important but 
difficult steps in the areas of computer vision and image 
processing, especially for detection and tracking of mul- 
tiple moving objects, image registration, motion compen- 
sation, image data  compression, and estimation of three- 
dimensional ( 3 D )  motion and structure of objects. The 
difficulty comes from 3D structural discontinuities and oc- 
clusions, as well as from independently moving objects. 

The existing DF estimation methods can be largely di- 
vided into three categories which are based on i) block 
matching, ii) pel-recursive estimation, and iii) discrete fea- 
ture correspondences, respectively. Block matching tech- 
niques can handle large image motion within the range of 
a given search area. These techniques are useful especially 
when the displacement is constant for a block of pixels. 
But, when the displacement is not constant or discontin- 
uous, they do not work well. For small image motion, we 
can use recursive methods using gradient [l, 21. However, 
these methods cannot be applied for large pixel displace- 
mrnt. The DF estimated using recursive methods is usually 
less reliable than that obtained by block search. Therefore, 
for those images having large image motion and discontinu- 
ities, a feature-based DF estimation approach is a promising 
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choice. An approach based on point correspondences was 
recently presented for the images whose DF  in the whole 
image plane can be approximated by one set of four coeffi- 
cients [3]. 

In this paper, we propose an approach to estimating 
and segmenting DF between two successive frames. The 
DF is estimated and segmented by a method that allows 
the DF in each segment to be represented by one set of 
six affine Coefficients. A segment consists of regions in the 
image. (A region is defined as a connected set of pixels 
having similar intensity values in an image.) Our method 
is based on local affine approximations of the DF which is 
derived under the assumption of locally rigid motion. Thus, 
the displacement vector ( d z ,  dy) at  t l ,  which represents the 
displacement caused by motion of a point located at  ( z ,  y), 
is locally approximated by: 

d z ( c 2 )  = CO + C l Z + C Z Y  

d y ( c y )  = c3 + c 4 z  + CSY. (1) 

Each distinct motion is represented in the image plane by a 

distinct set of values of six coefficients c %* c ,  U cy where 

cl: = {CO,CI ,CZ}  a n d c y  = { c ~ , c ~ , c ~ ) .  
To find the values of these distinct set of coefficients, 

multiple types of discrete features (points, lines and regions) 
between two successive frames are used. The first-order 
displacement equations are derived for regions and lines by 
using Eq. (1). All sets of values supported by the feature lo- 
cations in two adjacent frames are identified by exhaustive 
coarse-to-fine search. However, to reduce computational 
complexity the 6D parameter space is decomposed into two 
disjoint 3D spaces. The support for any set is computed 
from the image plane distances between the observed fea- 
ture locations and those predicted by the coefficient values. 
The well-supported sets of values thus found establish cor- 
respondences between features and group the features into 
subsets corresponding to locally rigid patches of the mov- 
ing objects [4]. Note that the integrated use of the multiple 
features increases the probability of finding well-supported 
sets. Then, a set of coefficients c are recomputed linearly 
by using the matched features in each group since they were 
obtained from the quantized space. 

The N s  sets of coefficients c thus obtained are used to 
describe the DF. For each region extracted at  t l ,  we select 
a set of coefficients which best describes the DF in the re- 
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gion in a sense that  it yields the minimum correlation error 
between the intensity values a t  11 and those predicted by c 
from the second frame. Since a region is initially extracted 
using only intensity values, it can contain different affine 
motions. In this case, it is split by identifying those pixels 
whose displacement vectors satisfy the affine transformation 
given by each set of coefficients. 

For image data compression, code words representing 
the quantized values of affine coefficients and information 
on the location of segments are generated. Isolated or very 
small segments can be ignored to  make the coding scheme 
efficient. The  method presented does not guarantee that  
all regions are included into one of N s  segments obtained. 
(This happens if some regions do not have features enough 
to  yield weU-supported sets although the use of multiple 
features gives a larger number of features in a region.) For 
these unsegmented regions, we can transmit the average 
intensity values instead of DF. At the pixels in those regions, 
it is also possible to compute c by iteratively minimizing 
correlation error ER, (c) which is defined later with respect 
to c. 

Section 2 discusses local affine modeling of the displace- 
ment field. Section 3 presents an approach for finding dis- 
tinct sets of affine coefficients. Section 4 describes how to 
use the distinct sets of affine coefficients to describe the 
DF. Section 5 presents the results from two experiments. 
Section 6 presents conclusion. 

2. AFFINE MODEL FOR DISPLACEMENT 
FIELD 

This section presents an affine displacement model to  de- 
scribe locally the image plane motion of an object under- 
going a general 3D rigid motion. The  X and X’ denote 
variables or labels at  t l  and t 2 ,  respectively. 

Consider a point do = [ X O ,  YO, Z0lT on an object in 3D 
at t i .  Let 2’0 be the corresponding point at  t 2 .  Denoting 
the rotation matrix and translation vector as R and f, 
respectively, the general 3D rigid motion is expressed by 

2’0 = Rdo + f. (2) 

Assuming the perspective projection with the focal length 
equal to one, the image coordinates (z;, 9;) of 2’0 at 12 can 
be expressed as 

, 711zO + 712yO + T I 3  + 2 
731 z0 + 732yO + 733 + 2 
72120 + 722yO + T23 + 2 

20 = (3) 

, 
Yo = (4) 

731 zo + 732yO + r33 + 2 
where ( 2 0 ,  yo) are the image coordinates at  11, and 7 1 1 , .  . . , 7 3 3  

are the nine elements_of R. 
Consider a point X = [X, Y, ZIT on the same object in a 

neighborhood of do. If we assume that the depth difference 
is small compared with ZO (i.e., < l ) ,  we have 

z - zo 
zo z = Zo( l+  -) = zo. (5) 

Let (z, y) and (z’, y’) be the image coordinates of 3 at ti 
and 2’ at 12 ,  respectively. Then, the-displacement field of 
the point d in the neighborhood of XO is represented by 

7 2 l Z  + 722Y + 723 + 
T312 + T32Y + 733 + 2 

def 
d , ( z , y )  = Y ‘ - Y =  - Y. (7) 

If we consider Taylor’s series at  the neighbor point of do 
whose depth difference is small, we can ignore the higher- 
order terms. Therefore, if (1) - << 1, and (2) the 
values of the second partial derivatives in the neighborhood 
of ( 2 0 ,  yo) which is not at object or occlusion boundary are 
not large, we can locally approximate the DF using affine 
transformations: 

d, = z’- z = CO + c 1z + c 2 y  

d, = y’ - y = ~3 + C ~ X  + ~ 5 y .  

(8) 

(9) 
Although the normalized image coordinates with the 

focal length equal to  one are used in the above derivation, 
any coordinate system which is affine-transformed from the 
normalized image coordinate system, for example, row and 
column coordinate system, can be used if the camera cali- 
bration is modeled by using 4 independent parameters for 
horizontal and vertical scale factors and image center coor- 
dinates. Note that the factor for the focal length (f) is in- 
cluded in horizontal and vertical scale factors. (The purpose 
of the camera calibration is to  establish the projection from 
the 3D world coordinates to the 2D image coordinates.). 
Let z’ ‘2 [z,yIt and ii = [u,v]’ represent the normalized 
image plane coordinates and the pixel coordinates (row and 
column). Then, the calibration of a camera is to  find the 
transformation from U’ to  5. Although the transformation 
is sometimes represented by six parameters [5], the angle 
between two retinal axes can be assumed to  be perpendic- 
ular and therefore the four parameters are to  be used to  
represent the transformation. Denoting the horizontal and 
vertical scale factors, and the offset for the image center 
coordinates by su and sur and 0’ = [ u ~ , v o ] ~ ,  respectively, 
we have 

def 

def 

5=SU’++,  (10) 
where 

Writing Eqs. (8) and (9) in a vector form, we have 

where 

- def def 
d,, ,  = [d,,dylt, and b = [ co , c~ ] ’ .  Replacing i,,, and z‘ 
with Eq. ( lo) ,  we have 

SG + 0’- S i i -  0’= A(SQ+ + b‘. (14) 
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Therefore, we can also represent the DF using a new affine 
transformation with respect to ii; 

L is derived similarly. Then, the image error for the pair of 
lines is defined as 

where A' 'Af S-'AS and b7 ef S-'(Ao'+ 6).  In summary, 
if the DF is modeled by affine transformations, the camera 
calibration is not necessary and therefore an arbitrary coor- 
dinate system can be used. In our experiments, the values 
of rows and columns are used for the coordinates. 

3. COMPUTATION OF AFFINE SETS 

This section describes an approach for finding distinct sets 
of six coefficients which are well-supported by feature loca- 
t.ions. We first present first-order displacement models for 
each type of features (points, regions and lines), and then 
describe how to obtain distinct sets of coefficients. 

3.1. Affine Model For Features 

3.1.1. Poznt 

Using Eqs. (8) and (9) ,  we define the followings for a pair 
of point features (Pt, P:) at t l  and t 2  for a given set of c: 

Then, the image error for the pair is defined as 

3.1.2. Regron 

Consider a pair of regions R and R' at  t l  and t z r  respec- 
tively. Denoting the coordinates of 2D centroids of the pair 
of regions by (Cz, Cy) and (Cl, Cb), respectively, we can 
derive the followings for a given c [4]: 

6 r , R , r J ( C r )  " CL,, - (CO + (1 + Cl)Cz,r + CZCy,,X19) 
def 

b y , R , r ~ ( C y )  = CL,, - (c3 + C 4 c z , 1  + (1  + Cs)Cy,t)(20) 

The image error for the pair of regions is defined as 

def 
s R , t j ( C )  J s z , R , r j  ( C Z ) ~  + 6 y , R , t j  (cy)' .  (21) 

3.1.3. Lane 

Consider a pair of lines L : Ax + By + C = 0 and L' : 
A'z + B'y +C' = 0 at  t l  and t 2 ,  respectively. Since the per- 
pendicular distance from the predicted image coordinates 
of an end point (zp ,yp)  of L to L' should be zero, we can 
derive the following for a given C: 

where xb,, = co+( l+c1)xp, ,  +c2yP,, and = c3+c4zp.,+ 
(1  + cg)yp,*. The  6 p , ~ , I J  for the other end point ( z q , y q )  of 

We note here that Eq. ( 2 2 )  involves both sets of coef- 
ficients cr and cy while only one set appears in Eqs. (16) 
and (17), and Eqs. (19) and (20). 

3.2. Integration Of Multiple Features 

The affine transformations for points, regions and lines are 
given by Eqs. (16) and (17), Eqs. (19) and (20), and Eq. (22), 
respectively. Note that the error measure of each feature 
( 6 p  ,,,, 6 ~ , ~ , ,  6 ~ , , ~ )  is in terms of the same unit, i.e., the im- 
age error, and we can treat them equally when we construct 
a support function to be maximized. Consider a group of 
local features at  t1  which are close together since the affine 
transformations are valid locally in the image plane. For 
each pair of the same type of features a t  tl  and t z ,  we de- 
fine a support function F of c as follows: 

I ,I 

where 

' $ 3  

(24)  

t is a predetermined number. Note that only those pairs of 
features having similar 2D attributes a t  two time instants 
are considered to reduce the computation as well as to in- 
crease confidence in the solution. 

Our goal is to find all sets of the six parameters i? corre- 
sponding to the dominant local maxima of F .  The support 
function F is likely to have many small local maxima since 
the extracted features contain unknown subsets each having 
a different, unknown motion. Therefore, exhaustive search 
is one way to obtain all dominant local maxima. However, 
since the 6D space is too large to search, we decompose 
this into two disjoint 3D spaces. A similar decomposition 
of 6D space was also used by Adiv [6] for Hough transform. 
We define the decomposed support functions F, and Fy as 
follows: 

1 , J  ' 3 1  

(27) 
where the terms representing line pairs are not included 
since the expressions for 6 p , ~ , , 1  and 6 q , ~ , , 1  in Eqs. ( 2 2 )  in- 
volve all six coefficients. 

To obtain all the dominant local maxima of F, we find 
the global maximum of F one at  a time for the largest re- 
maining features as follows: For the largest group of local 
features, we first find I\i3 number of the candidate sets of c, 
and cy corresponding to the peak values of F, and Fy by 
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searching each quantized 3D space, respectively. Then, for 
N: combinations of { c z , c z } ,  we select corresponding to  
the maximum of F defined in Eq. (24). These two steps are 
performed at  coarse-to-fine resolution to reduce the compu- 
tation. Note that c in Eq. (24) is a function of resolution 
in the search space. The search is separately performed 
in the 3D parameter spaces for feature points, line points 
and regions. (A line point is defined as the intersection of 
lines.) Then, the combination of solution triples which cor- 
responds to  the maximum value of F is obtained. Feature 
correspondences are established by using the set of the six 
coefficients yielding the maximum value of F and the cor- 
responding matched features comprise a segment. After re- 
moving these matched features from further consideration, 
the above process continues until there is no dominant peak 
in the search space. 

3.3. Linear Estimation Of An AfRne Set 

Given a segment of feature correspondences, denoted by Si, 
a set ci of the six affine parameters of Si is linearly com- 
puted, thus yielding more accurate values than c? obtained 
by searching the quantized space. This linear computation 
is used to merge any two segments into one if they satisfy 
one affine transformation. Let m p ~ ,  mL,1  and ~ R , I  be the 
numbers of matched pairs (P,, P,’), (R,,  R:) and (L , ,  L : )  of 
points, regions and lines in S I ,  respectively. (Here, features 
are relabeled in such a way that matched features have the 
same subscripts.) Then, we define an objective function to  
be minimized with respect to ci as follows: 

m p  ma m r  

6sI ( C I ) ’  sf 6$,,,(c1) + 6 i , I I ( c 0  + 6;,,,(c~) (28) 
t = l  1=1 ,=I 

where 6 ~ , , ) ,  6 ~ , , ]  and are defined in Section 3.1. Note 
that each term in the above objective function has the same 
unit. This minimization is a standard linear least squares 
problem which can be easily solved. 

To measure the goodness of the segment Si and the 
estimated C I ,  we define the average image error for matched 
features in SI as follows: 

4. DESCRIPTION OF DISPLACEMENT FIELD 
USING DISTINCT AFFINE SETS 

The cl ( j  = 1 , .  . . , N s )  obtained in this way are used to  
describe the DF. For each region R, (: = 1 , .  . . , N R )  ex- 
tracted at  t l ,  we select one set C I  which best describes the 
DF in the region. Given image intensity functions 11 and Zz 
between two successive frames, we define an error measure 
with respect to  cl for a region R, at  t l  as follows: 

def where z ’ (c l )  = z + d,(cJ) ,  y’(cJ)  % y + dy(c l ) ,  and A is 
the area of R,. For the noninteger values of ( d z , d y ) ,  the 
bilinear interpolation is used. The  robust error measure 

‘$(z) [7] is used to  reduce the effect of outliers, for example, 
caused by occlusion in a region: 

where A is a constant scale factor. Therefore, for each 
region R,, we select ci which yields the minimum value of 
ER,(cJ) ,  i = 1 , .  . . , Ns. 

However, a region can have different affine motions since 
the regions are initially extracted using only intensity val- 
ues. If the minimum value E R , ( c ~ )  is larger than a given 
threshold 6, RI is split using matched and grouped sets of 
discrete features. That is, if R, includes matched features 
from different groups, it is segmented by identifying those 
pixels whose displacement vectors satisfy the affine trans- 
formation given by ci from each group, respectively. 

5. EXPERIMENTAL RESULTS 

We first summary the major steps of our algorithm. 

Algorithm 

1. Extract features (points, lines and regions) indepen- 
dently a t  t l  and t z .  

2. Find all sets of the cl well-supported by feature loca- 
tions in two frames by using exhaustive coarse-to-fine 
search. 

3. For each extracted region R, at t i ,  select C I  which 
yields the minimum value of ER,(c]) ,  j = 1 , .  . . , N s .  
If the minimum value is smaller than a given thresh- 
old cs, the region P is included into the segment St. 

4. Split the regions which are not included in any seg- 
ment in Step 3. 

In this paper, we present the experimental results obtained 
by Steps 1, 2 and 3 of the algorithm. Implementation details 
for Step 2 in the algorithm is described in [4]. The values 
of A and cs used were 10 and 0.7 respectively. 

5.1. Indoor Images 

Two frames of indoor scenes, of size 512 by 512, are used. 
The  magnitude of the displacement vector in the lower-right 
part is as large as 37 pixels. 

Figures l ( a )  and (b) show the images from which 320 
and 310 regions were extracted, respectively. Six distinct 
sets of affine coefficients were obtained by Step 2 of the al- 
gorithm. Among 320 regions at  t l ,  the DF of 295 regions 
could be represented by one of c l ,  j = 1 , .  . . ,6. The result- 
ing DF is shown in Fig. l ( e )  and the six segments are also 
displayed using different grey values. The comparison of 
the intensity difference between 11 and I z  with the motion 
compensated intensity difference defined in Eq. (30), which 
are shown in Figs. I(c) and (d), demonstrates the feasibility 
of our approach. 

5.2. PUMA Images 

Two real images (384 by 500) of PUMA are used. The 
magnitude of displacement vector at the larger arm is as 
large as 15 pixels. 
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Figure 1: Indoor Images: (a) First image I , .  (b) Second - I ,  - -  \ ,  

image I z .  (c) Intensity difference between I1 and I2. (d) 
Motion compensated intensity difference. (e) Resulting DF 
in I ] .  

Figures 2(a) and (b) show the images. The numbers 
of regions extracted in two frames were 182 and 195, re- 
spectively. Three well-supported sets of affine coefficients 
were found by Step 2 of the algorithm. Among 182 regions, 
the DF of 173 regions could be represented by one of C,, 
,i = 1 , .  . . , 3 ,  showing large amount of reduction of data  nec- 
essary to represent the DF. The resulting DF is shown in 
Fig. 2(e) where the three segments are also displayed using 
different grey values. 

Figures 2(c) and (d) show the intensity difference be- 
tween 11 and I 2  and motion compensated intensity differ- 
ence (See Eq. (30).), respectively. Note that the error near 
the upper edges of both arms is caused by the occlusion. 

6. C O N C L U S I O N  

In this paper, we have described an approach for estimation 
and segmentation of DF  using distinct sets of first-order 
coefficients obtained from multiple features. 

Our method will be useful especially for those images 
having large and multiple image motions. 
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