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ABSTRACT 
We present a novel framework for denoising signals from 
their compact representation in multiple domains. Each do- 
main captures, uniquely, certain signal characteristics bet- 
ter than others. We define confidence sets around data in 
each domain and find sparse estimates that lie in the inter- 
section of these sets, using a POCS algorithm. Simulations 
demonstrate the superior nature of the reconstruction (both 
in terms of mean-square error and perceptual quality) in 
comparison to the adaptive Wiener filter. 

1. INTRODUCTION 

We consider the problem of estimating a signal corrupted 
with zero-mean additive white Gaussian noise (AWGN) of 
a known variance U’. The Wiener filter is optimal in min- 
imizing the mean-square error under suitable assumptions 
on the stationarity of the signal statistics. Locally, such as- 
sumptions are reasonable, as in the adaptive realization [I] 
of the Wiener filter whose performance is among the best 
known till date. 

Recently, there has been renewed interest in various 
threshold-based denoising methods, in linear unitary trans- 
form domains where the signal has a sparse representa- 
tion. Towards this end, wavelets are known to possess this 
compaction property for a wide class of real-life signals. 
Thresholding in the wavelet domain has been shown to be 
asymptotically nearly optimal in a minimax mean-square 
error (MSE) sense over a variety of smoothness spaces [2]. 
Donoho’s hard thresholding, for example, “kills” transform 
coefficients smaller than the universal threshold u d m  
(where N is the data size), by setting them to zero and re- 
tains others unaltered. The philosophy of this approach 
is that small coefficients are very likely due to noise, the 
threshold representing an optimal tradeoff in terms of the 
“risk” incurred in destroying a significant signal coefficient 
(when the threshold is too large) versus retaining exces- 
sive noise power (when the threshold is small). Despite 
these asymptotic optimality properties, hard thresholding 
produces prominent artifacts when applied to images cor- 
rupted by moderate to high amounts of noise. 

We now dwell briefly on the central theme of the pa- 
per, an idea that is expounded in the sections to follow. 
Assuming for the moment that a universally thresholded 
noisy signal is a “reasonably reliable” signal estimate, a 

natural question is the choice of the unitary transform in 
which the signal representation is sparse. If one were to 
restrict oneself to a class of structured linear unitary trans- 
forms, such as for example, the class of all orthonormal 
wavelet transforms, there would in general exist several do- 
mains in each of which the signal energy is “sufficiently 
compacted” in a relatively few, large coefficients and there 
is really no strong reason to prefer one domain to another 
in terms of the MSE performance. There is clearly an in- 
formation overlap in these equivalent representations but at 
the same time, each domain captures, uniquely, certain sig- 
nal characteristics better than others, an observation that 
is also corroborated in our study. We therefore expect that, 
“intelligent” combination of estimates in different transform 
domains should improve performance. We restrict our in- 
vestigation to combining information from Donoho’s hard- 
thresholded estimates, but the principle is by no means re- 
strictive to a specific denoising scheme or to a specific class 
of signal representation domains. The key idea behind our 
scheme is to define confidence sets around the data in each 
transform domain. We then seek a signal that lies in the 
intersection of these sets and, ideally, is closer to the signal 
than the estimate in any single domain. 

We have recently learned about another method for de- 
noising using two wavelet domains [3]. There, a second do- 
main was used to obtain a (pilot) signal estimate from which 
to compute signal statistics to design a wavelet-domain 
Wiener filter. 

2. OVERVIEW OF THE MULTIPLE-DOMAIN 
DENOISING ALGORITHM 

To start with, we need to identify the wavelet filters which 
would be best for complementary processing. The informa- 
tion lost in any domain by thresholding is represented by 
small valued coefficients in that domain. One would want 
the information captured by relatively small coefficients in 
one domain to be represented by large valued coefficients 
(that would not be destroyed by thresholding) in others 
while simultaneously desiring a compact signal represen- 
tation in all domains. We leave the problem of optimal 
transform class selection for future research. One possible 
heuristic for selecting the wavelet domains is to  use filters 
that generate wavelets having different degrees of smooth- 
ness. In our simulations, we use a family of orthonor- 
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mal, compactly-supported wavelets with extrema1 phase 
and minimum number of vanishing moments for the given 
support length, due to Daubechies [4]. This family was 
found to possess the desired properties for most 2-D signals 
such as Lena  and Sailboat that we worked with. 

In each domain we define a confidence tube of radaus S as 
the set of signals with coordinates si satisfying Isz -d,/ 5 Sz, 
where d, are the transform data and 6, = 6 > 0 if Id.] < 
X = u d m  and 6, = 0 otherwise. (See Fig. 1). By 
defining 6, = 0 for large coefficients, we force the estimates 
to agree with “reliable” components of the data. 

Uluseatlng a Confidcncs Tubs 

Figure 1: 2-D representation of a confidence tube with ra- 
dius S centered around noisy transform data (arranged in 
descending order). 

The confidence tube in each domain is both closed and 
convex. This suggests the use of successive projections of 
an initial signal estimate onto confidence tubes in multiple 
domains, as a means of extracting a signal that retains char- 
acteristics of all tubes while being close to the initial signal 
estimate. That, successive projections onto closed convex 
sets starting from an arbitrary initialization will converge, is 
a result well known in the theory of projection onto convex 
sets (POCS) [5]. 

POCS seeks a point that lies in the intersection of sev- 
eral closed convex sets, the initial point being important 
only so far as to affect the dynamics of convergence. In the 
problem at hand however, the initial point is crucial, since, 
the intersection set contains many undesirable signals, in- 
cluding, for example, the noisy data. It can be shown that 
the intersection set also contains much sparser signals. We 
would like the final iterate to inherit the characteristics of 
“reasonable” estimates in every domain while being closer 
to the clean signal. (Other convex constraints that might 
help characterize the signal can be easily incorporated into 
this framework. See below.). A reasonable choice for the 
initial point is thus the hard-thresholded signal estimate in 
any domain. An equivalent choice is the zero signal (the 
proof is elementary). 

3. NUMERICAL RESULTS 

Fig. 2 compares the PSNR (lOlog,,( &)) performance for 
Lena  as a function of tube radius for noise with s.d. 10 (with 
the noisy data in the image domain quantized to integers in 
the range 0-255). Here, Daub. 3,4 refers to the Daubechies 
filters with 3 and 4 vanishing moments. The limited spatial- 

intensity range, an additional convex constraint popular in 
POCS based image restoration literature, was also incorpo- 
rated in our simulations. Observe that reconstructions us- 
ing more domains (if appropriately chosen) , do consistently 
better for most tube radii. Also observe that the peak is 
consistently attained at wound 20. The peak performance 
using four domains was better by 0.22 dB than MATLAB’s 
spatial, adaptive, Wiener filter reconstruction using a win- 
dow of size 3 x 3. Several window sizes were tried and the 
one that produced the smallest MSE was chosen. 
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Figure 2: Comparison of performance on Lena  using data- 
centered confidence tubes, B = 10. Dot-dashed line : two 
domains (Daub. 3,4). Dashed line : three domains (Daub. 
2,3,4). Solid line : four domains (Daub. 3,4,5,6). 

In Fig. 3, we compare the perceptual quality of im- 
age reconstruction by different methods for L e n a  corrupted 
with AWGN of s.d 15. Fig. 3(a) and (b) show the orig- 
inal and noisy Lena  image, respectively. Fig. 3 ( ~ )  shows 
the result of wavelet (Daub. 3) hard thresholding using 
Donoho’s threshold. Notice the ringing artifacts near edges 
that arise due to zeroing out of significant edge informa- 
tion present in small valued coefficients. Fig. 3(d) shows 
MATLAB’S adaptive Wiener filter reconstruction (in the 
spatial domain) using a window of optimal size, 3 x 3. No- 
tice that this reconstruction contains significant residual 
noise, and the image still looks grainy. Fig. 3(e) shows the 
multiple-domain reconstruction using two domains (Daub. 
3,4), and Fig. 3(f) shows a 5-domain reconstruction (Daub. 
3,4,5,6,7) for a tube radius of 2u. Observe that detail fea- 
tures in the texture of the hat and hair and the lip shape 
are better captured in the 5-domain reconstruction than 
the other methods. The image in Fig. 3(c) was obtained by 
performing hard thresholding in each of these five domains 
and choosing the reconstruction that produced the smallest 
MSE (although there was only marginal variation in PSNR 
in different domains). 

Further improvements in performance are attained by 
averaging out the final iterates corresponding to initial points 
(the hard-thresholded estimates) from each domain. Ex- 
cept for results of Fig. 2, whenever we use two domains, we 
perform this additional averaging of final iterates. This is 
quite different from taking a simple average of the hard- 
thresholded estimates in different wavelet domains. For 
Lena  corrupted by noise of s.d. 10, the PSNR of the best 
hard-thresholded estimate among the two domains was 30.41 
dB, a simple averaging of these estimates had a PSNR = 
31.42 dB, while the 2-domain reconstruction with averag- 
ing of final estimates had a PSNR = 33.68 dB for a tube 
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radius of 2a. While convergence of the algorithm is typi- 
cally attained in eight iterations, we have used ten iterations 
in-all our simulations, where, a complete sequence of suc- 
cessive projections onto convex tubes in multiple domains, 
together with the imposition of spatial, signal intensity con- 
vex constraints between these projections, constitutes one 
iteration. In the following section we examine merits related 
to centering the confidence tube around data as against the 
estimate (the popular practice in POCS literature). We also 
examine some sparsity properties of the proposed scheme. 
Towards this end, we restrict our discussion to two wavelet 
domains (Daub. 3,4). 

OlSTUlCE F R M  CCNVEKSET I,LWB. S .  LEVA NOLSESD I I D  
7 0 , ~  . . . . , . .  

. .  
$0. .  . . ,....,...... .,.. .......... ..: ./........ < .... .. 

00 i o  m sv 40 m B(i 70 80 00 tw 
TUBE WDIW --+ 

Figure 4: Distance from convex set in domain 1 (Daub. 3), 
for Lena, U = 10, using two domains (Daub. 3,4). Solid 
line : data-centered. Dashed-dot line : estimate-centered. 

4. DISCUSSION 

In hypothesis testing literature, wnfidence intervals are clas- 
sically centered around estimates. Our approach of using 
data-centered estimates is a significant departure from con- 
vention and needs justification. 

In order to simplify the discussion, we shall assume a 
uniform confidence tube centered around all noisy coeffi- 
cients, that is, 6i = 6, Vi’. The apparent distribution of the 
original signal values around the noisy data is i.i.d. N(0,a’). 
Thus at each noisy coefficient, the original signal coefficient 
is expected to be found (with a high probability) within an 
interval of radius 20. It can be shown that the expected Eu- 
clidean distance of the original signal from confidence tubes 
centered around data is independent of the signal values. 
For confidence tubes centered around thresholded estimates 
however, this expected distance is data-dependent. For 
highly sparse signals, estimate-centered confidence intervals 
are the better choice. However, there exist classes of signals 
for which the expected Euclidean distance from the data- 
centered set is smaller than that from an estimatsentered 
one. That, for many real-life images, a data-centered tube 
is closer to the original image than an estimate-centered 
one is corroborated in our simulations, see Fig. 4. Fig. 5 
shows the mean-square distances of successive projections 
from the original signal for a tube radius that was best 
(in terms of MSE) for each of the convex sets (the data 

and estimate-centered tubes). Observe that successive dis- 
tances in each case diminish with successive projections as 
expected, but the data-centered reconstruction gets closer 
to the original signal at each stage. Fig. 6 compares the 
PSNR performance of either set as a function of tube ra- 
dius. The curves for each set behave quite differently, the 
data-centered estimates performing consistently better for 
all tube radii. 

An interesting result is the following : if the initial es- 
timate is the zero signal, its first projection onto a data- 
centered set is equivalent to performing a soft thresholding 
operation on the noisy data with a threshold equal to the 
tube radius, 6. The soft thresholding operation is given by 
sgn(d) ”(0, Id1 - 6) where d is the noisy data. 

The final iterate has a sparse representation as mea- 
sured by the histogram of its coefficients. Fig. 7 compares 
the histograms of transform coefficients for the original and 
noisy images, the hard-thresholded estimate, and the 2- 
domain, data-centered reconstruction. Observe that the 
multiple-domain, data-centered reconstruction is sparse and 
is closer to the original histogram than is the hard-thresholded 
reconstruction. 

5. CONCLUDING REMARKS 

We have demonstrated a novel method of combining infor- 
mation from multiple signal representations, to significantly 
improve a baseline denoising scheme such as hard threshold- 
ing that produces oversmoothing and ringing artifacts near 
edges when applied to typical images. The gains in PSNR 
are typically of the order of 2 to 3 dB for typical real-life im- 
ages. Similar gains (not discussed here) were also obtained 
for smaller and larger noise variances. The multiple-domain 
approach has opened up possibilities of extracting “useful” 
information from several (maybe poor) estimates of the sig- 
nal to improve performance by huge margins. These prin- 
ciples are not restricted to corruption by AWGN. There are 
several avenues for future work. An important issue is the 
optimal selection of representation domains. Also needed is 
a rigorous analysis of the method and ways to incorporate 
statistical knowledge of the signal/noise into the framework 
of confidence sets. 
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Figure 5: MSE of successive projections for Lena, U 
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Figure 3: Comparison of different denoising schemes. 
(a) Original Image, (b) Noisy Lena, U = 15, PSNR = 
24.61 dB; (c) Donoho's wavelet thresholding (Daub. 31, 
PSNR=28.54 dBi (d) MATLAB'S adaptive Wener filter 
(3 x 3 window), PSNR=31.24 dB; (e) 2-domain reconstruc- 
tion (Daub. 3,4), PSNR=31.38 dB; (f) 5-domain recon- 
struction (Daub. 3,4,5,6,7), PSNR=31.76 dB 

Figure 7: Comparison of histograms of transform coeffi- 
cients (Daub. 3) for Lena. Dashed-dot line : original. 
Dashed line : noisy(,, = 10). Solid line : 2-domain, data- 
centered. Stars : hard-thresholded. 
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