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We present an integrated method to match multiple features
including points, regions, and lines in two perspective images,
and simultaneously segment them such that all features in each
segment have the same 3D motion. The method uses local affine
(first-order) approximation of the displacement field under the
assumption of locally rigid motion. Each distinct motion is
represented in the image plane by a distinct set of values for
six displacement parameters. To compute the values of these
parameters, the 6D space is split into two 3D spaces, and each
is exhaustively searched coarse-to-fine. This yields two results
simultaneously, correspondences between features and segmen-
tation of features into subsets corresponding to locally rigid
patches of moving objects. Since matching is based on the 2D
approximation of 3D motion, problems due to motion or object
boundaries and occlusion can be avoided. Large motion is also
handled in a2 manner unlike the methods based on flow field.
Integrated use of the multiple features not only gives a larger
number of features {overconstrained system) but also reduces
the number of candidate matches for the features, thus making
matching less ambiguous. Experimental results are presented
for four pairs of real images. © 1995 academic Press, Inc,

1. INTRODUCTION

The problem we address in this paper is to match and
segment features such that all features in cach segment
have the same three-dimensional (3D) motion from a pair
of two-dimensional (2D)) images. The difficulty of estab-
lishing feature correspondences comes trom the 3D struc-
tural discontinuities and occlusions, as well as from inde-
pendently moving objects. One goal of this paper is to
show that integration of matching and segmentation and
the use of multiple features simultaneously makes it easier
to find correspondences.

! "The support of the Defense Advanced Research Projects Agency and
the National Science Foundation under Grant IRI-89-02728 is grate-
fully aknowledged.
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The existing methods for matching can be largely divided
into two categories which are based on the computation
of flow field [1-3] or the establishment of discrete feature
correspondences [4-11], respectively. Even though the
flow-based approaches do not require feature extraction
and matching, problem occurs when the motion is large,
as in the case for stereo. Medioni and Nevatia [4] establish
line correspondences based on relaxation. MclIntosh and
Mutch [5] and Liu and Huang [6] propose algorithms for
finding line correspondences. Sethi and Jain [7] present an
alporithm for finding smooth point trajectories over an
image sequence. Crowley er al. [8] and Deriche and Fauger-
aus [9] present algorithms for tracking lines by using local
affine models using four parameters for each line. Ven-
kateswar and Chellappa [10] describe a hierarchical match-
ing method in which the matching starts at the surface
level and ends at the line level. Weng er al. [11] present a
point-matching method which yields dense fiow. Most of
these methods for discrete feature matching {4, 5, 7-11]
are based on maximization of compatibility of 2D attri-
butes and relative 2D locations. They may fail, for example,
near the image boundary where relative locations are not
preserved, or for motion along the optical axis which in-
volves significant change in the relative 2D locations of
features. Sawhney and Hanson [12] describe a method for
tracking a set of three lines based on an affine transforma-
tion using four parameters but do not discuss segmentation
and matching of lines having different motions. In fact, all
of the existing tracking methods need an initial matching
in the first two frames as a bootstrapping step. Sull and
Ahuja [13] present an algorithm for matching and segmen-
tation of regions in two views using affine transformations.
In this paper, the algorithm is extended to utilize multiple
features. It is our intention to show that the matching
problem becomes easier by matching and segmenting mul-
tiple features simultaneously.

Adiv [14] presents a method for the segmentation of
optic flow based on the Hough transform. Black and Anan-
dan [2] describe a model for incremental estimation of
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flow field over an image sequence based on a line process
[15]. But, as indicated in [16], a line process cannot inte-
grate information from nearby but disconnected regions
even if they belong to the same object. Darrell and Pent-
land [16] present a method for scene segmentation based
on a simple direct motion model of translating objects. All
these methods are based on flow and therefore problems
occur for large motion.

In this paper we present an integrated method which
matches and simultaneously segments multiple features
such as points, regions, and lines in two perspective images.
Our method is based on local affine approximation of the
displacement field which is derived under the assumption
of locally rigid motion (see Section 2). Thus, the displace-
ment vector [d,, d,]" at t;, which represents the displace-
ment caused by motion of a point located at (x, y), is locally
approximated by

di=cpteox+cy

dy =¢34+ cax + esy.

Each distinct motion is represented in the image plane by
a distinct set of vatues of six parameters ¢ =% {¢,, ¢1, ¢,
¢, Cy, o5t All sets of values supported by feature locations
in two adjacent frames are identified by exhaustive coarse-
to-fine search. However, to reduce computational com-
plexity the 6D parameter space is decomposed into two
disjoint 3D spaces. The support for any set is computed
from the image plan¢ distances between the observed fea-
ture locations and those predicted by the parameter values.
The well-supported sets of values thus found yield two
results simultaneously; first, they establish correspon-
dences between features, and second, they segment the
features into subsets corresponding to locally rigid patches
of the moving objects.

Since features are matched based on 3D motion con-
straints, problems due to motion or object boundartes and
occlusion can be avoided. Further, our method can handle
large motion as well as small motion. The integrated use
of multiple features not only gives a larger number of
features (overconstrained system) but also reduces the
number of candidate matches for features, thus making
matching less ambiguous.

In this paper, the term point feature denotes both a
distinguished image point as well as the intersection of
lines (line points). The former is defined as a point whose
location corresponds to the local maxima or minima of the
intensity values.

Section 2 discusses local affine modeling of the displace-
ment field. Section 3 describes affine models for individual
features and the integration of multiple features. Section
4 describes the different steps of the algorithm. Section
5 presents the details of implementation and the results
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obtained from four experiments. Section 6 presents conclu-
sions and extensions.

2. AFFINE MODEL FOR DISPLACEMENT FIELD

This section presents an affine displacement model to
locally describe the image plane motion of an object under-
going a general 3D rigid motion. The subscript / for the
ith feature and the ith segment is dropped when there Is
no confusion. The X and X’ denote variables or labels at
£ and 5, respectively_;

Consider a point X, = {Xq, Yo, Zo}" on an object in 3
D at time . Let X be the corresponding point at f,.
Denoting the rotation matrix and translation vector as R
and T, respectively, the general 3D} rigid motion is ex-
pressed by

Xi=RX,+ T (1)
Assuming the perspective projection with the focal length
equal to one, the image coordinates (xj, vg) of Xj at & can
be expressed as

ruxo+ raye+ s+ TxiZy
ryuXo + Fapve + ra + T2l Zg

(2)

Xy =

FaXg + oo+ ra+ TyvlZ,

r— , 3
Yo 31X + 32 Yo + r;z + Tzf'Z() ( )

where (xy, yo) are the image coordinates at ¢, and ryy, .. .,
ri; are the nine elements of R.

Consider a point X = [X, Y, Z] on the same object in
a neighborhood of X,,. If we assume that the depth differ-
ence is small compared to Z, (i.e.,|Z — Zol/ Zy € 1), we have

Z -7
z—zn(1+ 7 ”)»«:ZO.

4)

Let (x, y) and (x', y'} be the image coordinates of X at 1
and X' at 1, respectively. Then, the displacement field of
the point X in the neighborhood of X, is represented by

_ rpx + Iy + Fia + TX/Z(J B
raX tryay +ra+ T2/ 2y

d(x,y) L —x (5)

def  FaX + Faz ¥ + rs + Ty/ZO
dy(x5y) =y -y=

-y. (6)

X + Fi ¥ + ¥z + TZIIZO

Since we are considering the neighbor point of X,, which
has a small depth difference as stated above, we can assume
that the first partial derivatives of d.(x, y) and d,(x, y) are
continuous in a closed neighborhood of (xy, y,) and the
second partial derivatives exist in the open neighborhood.
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Therefore, we can derive expressions for the values of the
displacement field near a point (xo, yo) by using Taylor’s
series [17]:

di(x, y} = dilxo, yo) + ((x - Xp) % +(y — o %)

d.(x0, yo) + R® (N

dy(x,y) = dy(xo, yo) + ((x - xu)‘% +(y — yo) a_ay)

dy(xo, yo) + R, (8)

where

2
@il 3 oy
RO (= x0 2+ =305

d.(xo + a(x — xo), yo + a(y — yo)),
O<a<1

9
2
R§,2) ng% (((x — Xp) :% + (¥ — yo) aa_y)

dy{xo + B(x — x0), yo + B(y — yo))s

0<B<1 (10)
If we assume that the values of the second partial deriva-
tives in Egs. (9) and (10) are not large, we can ignore the
remainders R and R{¥ since the values of [x — x| and
|y — yo| are practically very small in the neighborhood of
(xo, yo). Therefore, if we assume that (1} |Z — Zy|/Z, < 1,
and (2) the values of the second partial derivatives in the
neighborhood of (x,, yo) are not large, we can locally ap-
proximate the displacement field using affine transforma-
tions:

d=x-—x=c¢+tex+ey

(11)

dy=y —y=cy+cax + csy. (12)

To derive more specific assumptions for the validity of
the first-order approximations, we rewrite the denominator
h{x, y) in Eqs. (5) and (6):

h(x,y) = rai(xo + (x = Xo)} + raa(yo + (¥ = yo))
Tz
+ ry + 2
Fi3 Z, (13)
= h(xo, yo) + rau(x — xp) + r32(y — yo)-

Since |ry| = 1, |rss) = 1 and |x — xo| € 1and |y — yo| < 1 for
the CCD cameras available currently, we can approximate
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h(x, ¥) as a constant near (xg, yo) if [r(xq, yo)| > 1 — & (&
a small positive number). Therefore, if we assume that (i)
iZ — Zo|/Zy < 1 and (ii) |h(xo, ¥o)l > 1 - & (e: a small
positive number), we can [ocally approximate the displace-
ment field using the affine transformations. We note here
that Assumption (i) is a special case of Assumption (2}
stated above. Further, the assumption that (a) the rotation
angle is small and (b) T,/ 7, <€ 1 is a special case of Assump-
tion (ii), which was used in [11, 14]. In summary, we can
model the displacement field by using the affine transfor-
mations if Assumptions (1) and (2) are satisfied. We note
here that Assumptions (1) and (2) are general enough to
be satisfied in most cases except at the object or occlu-
sion boundary.

3. AFFINE MODELS FOR FEATURES

This section presents affine displacement models for
points, regions, and lines, which are used later to integrate
segmentation and matching of image features of points,
regions, and lines.

3.1. Point

The displacement is modeled locally using ¢ =% ¢, U
¢,, where ¢, =% {cq, ¢(, ¢;} and ¢, =% {¢;, ¢4, 5} as in
Eqgs. (11} and (12). Then, given ¢, we define the following
error measures for a pair of point features (P;, P/) at
and f,:

Sx,P,ij(cx) déij} - (CU + (] + C))Xi + Czy,')

(14)
(15)

Here P in the subscript denotes the fact that the features
under consideration are point features. Then, the image
error for the point features (P;, P}) 1s defined as

By,P,f,-"(cy) dg)’f = {5+ cax; + (14 c5)yi).

dp.iy(€) < \/@r,p,s}'(cx)z + 8, p e, ) (16)

3.2. Region

Let R and R’ be the corresponding regions at ¢ and 5,
respectively. For a smooth function f, we know

[ [ foenyaxdy=[{ foc+dey+d)idcdy,
(17)

where J is the Jacobian

adx X
- }(1 +H)(1 +9ﬂ) _ 0ddd,
ax dy dy dx

Using Eqs. (11), (12), (17), and (18), we have

. (18)
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J= (1 + es + 1) — cacy. (19)

If £ =1, then the equation simply represents the area rela-
tionship

(20)
where

M, ‘jﬁffkafyf dx dy
(21)
My [ [ vy dxay.

For f = x and f = y, we obtain two equations for each
region correspondence from Eqgs. (11}, (12), and (17):

1o
5 - My = cgMyo + 1 Mg + My

M,
- My = 3 My + caMhg + esMy .

These can be rewritten as
C;:Cg'f(]_ +C])CI+C2C), (22)
Co=c03+ ¢4C + (1 + ¢5)C,, (23)

where

L My M
CX—M(’)O C,,—M(,)0
oMo M

These are the relationships of the 2D} coordinates of
centroids of the corresponding regions.

In general, given ¢, a set of six parameters, we define
the following error measures for a pair of regions (R,
R) at t; and ¢,:

§x,R‘,-j(cx) qgf C;-u, - (CD + (1 + Cl)Cx,:' -+ Csz’,') (24)
8 ri(€,) £ Chy— (3 + eaCoy + (L4 ¢5)Cy ). (25)

The image error for the pair of regions (R;, R;} is defined as

Srii{€) & ‘\/at‘RJj(c.r)z + & r (€, )% (26)
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(%q: %)

(Xp, %)

FIG. 1. llustration of constraint for lines,

3.3. Line

Let L and L’ be the corresponding lines at 4 and fo,
respectively as shown in Fig. 1. Consider an end point (x,,
¥p) of L at #; in the image plane. Then, the image coordi-
nates {£,, §,) predicted from the affine transformations
are expressed by using Eqs. (11) and (12).

Let f, be the perpendicular distance from the predicted
image coordinates 1o the corresponding line in the image
plane at time £,. Then, referring to Fig. 1, we have

; @!A’fp + By, + C’l
P VarrBr

Since [, should be zero, we remove the absolute sign in
the above equation. For the other end point (x,, ¥,), I,
should be aiso zero. Most of the existing line tracking work
[8, 9, 12] used locations of end points of lines in their
computation although they are known to be very unstable.
In this paper, the longitudinal information of a line is only
utilized in such a way that §p;; defined in Eq. (16) for two
center points of [. and L’ should be less than a fraction
of the length of L.

Therefore, given ¢, a set of six parameters, the following
error measures for /, and /, are derived for a pair of lines
(L:, L]} at & and t,, respectively:

27)

A'leg + (1 + ¢c)xp; + c2vpi)
+ B'(cs + caxpi + (1 cs)yps) +C7

def
SP,L.U(C) = m (28)
A'{co+ (1 +edx,; + oay,:)
e + B’ + (1 + )+ C
b0 B G et Aty T C o,

VAT+ B?

Then, the image error for the pair of lines (L;, L;} is
defined as
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.L,ij(c)2

e 2 ,--(C)Z + 9,
51.4(¢ )"—“/ BRI (30)

We note here that Eqs. (28) and (29) involve both sets
of parameters ¢, and ¢, while only one set appears in Eqs.
(14) and (15), and Eqs. (24) and (25).

34. Integration of Multiple Features

The affine transformations for points, regions, and lines
are given by Eqs. (14) and (15), Eqgs. (24) and (25), and Eqs.
(28) and (29), respectively. Note that the error measure of
each feature {8p;, 8z, 6;.;) is in terms of the same unit,
i.e., the image error, and we can treat them equally when
we construct a support function to be maximized. Consider
a group of local features at f; which are close together
{within a predetermined distance) since the affine transfor-
mations are valid locally in the image plane. Let np, 1y
and ng be the numbers of points, regions, and lines under
consideration at ¢;, respectively. For each pair of the same
type of features at ¢, and z;, we define a support function
Fofe={cy, ¢, Cs, €3, €4, C5} AS

p Rp; g MR
F( )difz E] WPJJ\I’ (‘SPU(C)) + El 21 Wg U\If (§R q(c»
i=1 j= i=1 j=
n ng g (31)
2 Z; WL.ijq’ep(aL,sj(c)),
where
ger |17 m if —g,<x<g,
v, (x) = (32)
0 otherwise;

g, Is a predetermined number, wp ;, wg ;;, and w; ; repre-
sent weights; and np; represents the number of the neigh-
boring point features at £, with 2D attributes similar to
those of the ith point at ¢; (rg; and n ; are defined in the
same way). The choice of ¥, (x) does not matter as long
as it is a decreasing function of x since it is used only to
find the location of the maximum of F' by exhaustive search
{empirical results support this observation}. Note that only
those pairs of features having similar attributes at two time
instants are considered to reduce the computation as well
as to increase confidence in the solution.

Our goal is to find all sets of the six parameters € corre-
sponding to the dominant local maxima of F. The support
function F is likely to have many small local maxima since
the extracted features contain unknown subsets, each hav-
ing a different, unknown motion, Therefore, exhaustive
search is one way to obtain all dominant local maxima.
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However, since the 6D space is too large to search, we
decompose this into two disjoint 3D spaces. A similar de-
composition of 6D space was also used by Adiv [14] for
the Hough transform. We define the decomposed support
functions £, and F, as

p Rp;

p
F( de{E WPU el\/i(‘sxf’t](cx))

+ 3 D wai¥ va(Bera(ed)  (33)

F(y)dEfEEqu et’\/_(6yPu( ))

i=1j=1

g PR

+ 2 E WRij*e f\/i(aqu(cy))

i=1 =1

(34)

where the terms representing line pairs are not included
since the expressions for 6, ; and &, ; in Eqs. (28} and
(29) involve all six parameters.

To cobtain all the dominant local maxima of F, we find
the global maximum of F one at a time for the largest
remaining features as follows: For the largest group of
local features, we first find N5 of the candidate sets of ¢,
and e, corresponding to the peak values of F, and F, by
searching each quantized 3D space. Then, for N3 combina-
tions of {¢,, ¢,}, we select & corresponding to the maximum
of Fdefined in Eqg. (31). These two steps are performed at
coarse-to-fine resolution to reduce the computation. Note
that &, in Eq. (31) is a function of resolution in the search
space. The search is separately performed in the 31> param-
eter spaces for feature points, line points, and regions.
Then, the combination of solution triples which corres-
ponds to the maximum value of F is obtained. Feature
correspondences are established by using the set of the
six parameters yielding the maximum value of F and the
corresponding matched features comprise a segment. After
removing these matched features from further consider-
ation, the above process continues until there is no domi-
nant peak in the search space.

Although lines are used only in the combination step
(since the six parameters are not separable into two disjoint
sets), line points are utilized in the separate spaces. The
integrated use of the multiple features not only gives a
larger number of features (overconstrained system) but
also reduces the number of candidate matches for feature
points. Also, note that features such as regions and lines
(therefore, line points) have a small number of neighbors
{only cne in many cases) which have similar 2D attributes
since those features have more measurable 2D attributes
than points. As a result, when all of these features are
conservatively used together in the search, the dominant
peaks of F values are obtained.
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FIG. 2. An intersection point 1 is said to be near two lines L; and
Ly, if I is inside the upright rectangle containing L; as well as that con-
taining L;, after each rectangle has been expanded by T; pixels.

The affine modeling of the displacement field using six
parameters is able to describe more general motion than
using four parameters as in [12]. If four parameters are
used to describe the displacement field, then both scale
and rotation parameters appear in expressions for &, and
d, and therefore the support function F cannot be decom-
posed into two parts. Consequently, the 4D space needs
to be searched instead of 3D space, as is the case in our
method.

3.5. Linear Estimation of Six Affine Parameters

Given a group of feature correspondences, denoted by
S;, a set ¢ of the six affine parameters of 5, is linearly
computed, thus yielding more accurate values than & ob-
tained by searching the quantized space. This linear com-
putation is useful especially for the step of the algorithm
presented later to merge segments. (A merging step is
sometimes desirable since matched features corresponding
to different segments are oversegmented by the local affine
model. If any two segments satisfy one affine transforma-
tion, they are merged into one segment.} Qur goal is to
linearly compute ¢, = {cq, ¢y, €27, Ca1, Car, Csi}, Which best
describes the given correspondences in ;. Let mp;, m; 4,
and mg, be the numbers of matched pairs (7;, P{), (R,
R]),and (L;, L;) of points, regions, and lines in 5y, respec-
tively. (Here, we assume that features are relabeled in such
a way that matched features have the same subscripts.)

- [(Cq, €1, Cp)} {(cy. ©4, C5)}
Bx8xB BxBAB

' '

Ny best triples N best triples

l_ N:combinations J

Ng best combinations

¢

FIG. 3. Multiresolution search with decomposition.
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Then, we can define an objective function 10 be minimized
with respect to ¢ as

83(¢:) défz wp ;i 8p(€r) + 2 Wr.iiOk.i(€r)
i=1 i=1 (35)

i,

+ Z w1614,

i=1

where wp;, wg,, and w, ; represent weights and s,
8r;, and &y are defined in Eqs. (16), (26), and (30),
respectively. Note that each term in the above objective
function has the same unit. This minimization is a standard
lingar least-squares problem which can be easily solved.

To measure the goodness of the segment §; and the
estimated ¢;, we define the average image error for
matched features in S, as follows:

5 <) def 5%',((31)
S" “ (mp+mL+mR)'

3.6. Correlation Error for Individual Features

(36)

It is desirabie to verify the matched features in a segment
S; by checking the values of correlation errors defined
below since the error measures previously defined by &g/,
8rij, and &, ; consider only the centers of regions and
perpendicular distances for lines, for example.

Let I, and [, be image intensity functions at ¢ and £,
respectively, Given §; and ¢, we can define the following
errors for a pair of corresponding regions (R;, R/) in §; at
t; and 1, respectively,

r(@) €5 3 e -

WYIER;

I{x + dif(e), y + dy(e)|

(37)

> R(x—dier),y — dile)) - Blx,y),

A (x)ER;

() & 1

(38)

where [d}, d;)' is the displacement vector defined from £,
to , (which is easily computed given ¢;), A and A’ are the
areas (number of pixels) of R; and R/ at ¢, and #,, respec-
tively. Then, we can define a simple correlation error mea-
sure for the matched R; and R/ as follows:

erg(er) = max(er(e), £x(e)). (39)

For correspondmg points (P;, P{) in S, ep(¢;) and &p,
{¢;) are defined in the same way as in Eqs. (37) and (38)
while the summations are done over Np, and NP, instead
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Error versus &
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FIG. 4. Sensitivity of results to varying & for two images in Experiment 4. (a) Average image error. (b} Average correlation error. {c} Number

of matched features. {d) Number of segments.

of R; and R;, respectively, where Np and Ny, represent
windows (of size 7 X 7) centered at the jocations of P;

and P;, respectively. Then, we have a correlation error for
(P;, P}) defined as

epii(e) def max(ep(c;), SPJ‘!(Cf)). (40)

For a corresponding pair (L;, L]} of lines in §,, the
opposite sides along the lines are considered separately
since it is possible for them to belong to two differently
moving objects. The &, (¢/) and &, (¢;) are defined in the
same way as in Eq. (37), while the summations are done
over N, and N,,_, respectively, instead of R;, where
N, and N,, L, are defined by two parallelograms (of size
3% length of L;) located in opposite sides along the line
L;. The & ;. (c,) and &, (¢, are defined similarly for L].
Then, a 51mple correlation error is defined as

£.5(€1) < max(min(er  (€), &1 (e1), (41)

min(s;,L}:(C;), €r.L;(C1)))-

For the noninteger values of (d., 4,} in the computation
of correlation errors defined above, the bilinear interpola-
tion is used. Note that ez ;;(¢;) = 0 is a necessary condition
for two regions to be matched. The same argument holds
for points and lines. This verification is necessary to remove
false matches even though its number was very small in
our experiments.

4. ALGORITHM

This section describes our algorithm. The algorithm uses
peints, regions, and lines which are extracted indepen-
dently in each frame. It groups features based on the simi-
larity of six affine parameters by exhaustive search. It also
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FIG. 5.

Experiment 1, indoor images (a) First image f,. (b) Second image L. (c) Extracted points and regions in /;. (d) Extracted points and

regions in L. (e) Extracted lines and line points in ;. (f) Extracted lines and line points in I;. {g) Matched features in J, . (h)} Matched features in L.

establishes correspondences between points, regions, and
lines in two images.

1f two lines are not on the same plane in 3D, the intersec-
tion of their projected 2D lines can generate a spurious
line point in the image plane. However, the spurious point
is unlikely to have a corresponding point which satisfies
the local affine approximation. Line points are redundant
since they are determined by the detected lines, however,
they are very useful due to the following two advantages.

Since many man-made objects consist of planar surfaces,
the intersection of two lines often provides a good feature
(for example, see Experiment 1). Another advantage of
having line points is that it allows us to use the information
from lines in the decomposed 3D parameter spaces.

The algorithm consists of seven steps in which connected
groups (clusters) are obtained by grouping image features
(points, regions, and lines) in each frame. The largest con-
nected group is defined as a connected group which has
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FIG. 5—Continued

the largest number of features. Each connected group at
f; has the property that the minimum distance between
any feature and the others in the group is not larger than
a given threshold T,,.

The distance between a point and a line is defined as
the perpendicular distance if the perpendicular projection
of the point onto the line is on the line. Otherwise, it is
defined as the smaller of the distances between the point
and the two end points of the line. The distance between
one line and another line is defined as the minimum dis-
tance an end point is from the other line. If two lines

intersect, the distance between them is defined as zero.
For simplicity, the location of a region is represented as
its centroid, defined in Egs. {22) and (23).

We now describe these steps.

Matching and Segmentation Algorithm

Step 1. Initialization

1.1. Make Lists of Neighboring Points, Regions, and
Lines. Foreachregion att;, make a list of the neighboring
regions at ¢, within a distance T,; and having similar values
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FIG. 6. Experiment 2, outdoor images. (a) First image /. {b) Second image 5. (¢) Extracted points and regions in f,. (d) Extracted points and
regions in /. {e) Extracted lines and line points in /,. (f) Extracted lines and linc points in /. (g) Matched features in /,. (h) Matched features in [,

of 2D attributes, such as average intensity value, area, and
aspect ratio. .

For each feature point P at #;, make a list of the neigh-
boring points at ¢, within a distance T,, and having similar
values of 2D attributes such as correlation values. If a point
P is inside a region R at ¢; and a neighboring point P’ is
inside a region R’ at , then P’ is marked as a neighbor
of P only if R’ is a neighbor of R.

For each line at ¢;, make a list of the neighboring lines
at t, within a distance 7T,; and having similar values of 2D

attributes, orientation, length, and average intensity values,
for example.

1.2. Make Line Points. Yor each pair (L, L) of lines
at f; which have at least one neighbor at #;, generate a line
point if the intersection of L; and L, is near L; and L; (see
Fig. 2 for a definition of nearness).

For each pair (L;, L]) of lines at , which have at least
one neighbor at £, generate a line point if the intersection
of L; and L; is near L] and L].
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For each line point I at ¢, make a list of the neighboring
line points at t; within a distance T, if the two lines that
generated a line point at £, are neighbors of the two lines
that generated the line point I at 1;.

Step 22 Make an Initial Largest Connected Group §

Let T be the set which consists of those points, regions,
and lines at ; which have at ieast one neighbor obtained
in Step 1. Form the largest connected group S from 7.

Step 3: For the Largest Remaining Connected Group S,
Search for the Set of Six Parameters ¢ Yielding the
Maximum Value of F

Multiple resolutions are used for coarse-to-fine search
of each of the two quantized spaces (¢, ¢,, ¢»} and (¢,
€4, Cs), as shown in Fig. 3. Start with a 3D voxel in each
space the size of which is determined by the initial range
of values for (cg, ¢1, ¢2) and (c3, ¢4, €5), Tespectively. We
call this initial voxel in each parameter space a good voxel.



250

SULL AND AHUJA

FIG. 7. Experiment 3, mebile images. (a) First image I,. (b) Second image ;. (c) Exiracted poinis and regions in /1. (d) Extracted points and
regions in [>. (¢) Extracted lines and line points in /;. (f) Extracted lines and line points in ;. (g) Matched features in ;. (h) Matched features in /.

3.1. Divide each good voxel in the space of (¢, ¢1, ¢3)
by & X 8 X 8. Each good voxel in the space of (c3, ¢4, ¢5)
is also quantized by 8 X 8 X 8. Among the parameter
triples corresponding to centroids of the finer quantized
voxels in the space of (¢, ¢1, ¢z) (or (ca, ¢4, c5)), find a
set of the parameter triples C, =% {¢,, =% {cy;, cy;, ¢k
i=1,..., N3} (or €, =% {¢,;, =% {3, cy, c51 j =
1, ..., N3}) which vield the largest N, support values of
F.(c,;)in Eq. (33) or F,(¢, ) in Eq. (34)). {(Remember that
all pairs of each feature in § and its neighbors at #, are
used when the values of F, and F, are computed.)

3.2. If the resolution is the finest, go to Step 3.4. Other-
wise, select good ¢, ; and ¢, ; from C, and C,, respectively,
which give the best Ny combinations of solution iriples
corresponding to the largest Ng values of F(c,;, ¢, ;) defined
in Eq. (31) from the set of the total N3 combinations,
ny = Cx X Cy = {(Co,‘, Ciiy €245 C3jy Cyf, Csj)Z i = 1, ey
N3,j: 1,...N3}.

3.3. A voxel corresponding to each good candidate tri-
ple is called a good voxel. Go to Step 3.1.

34. Choose & = {cy, ¢, €2, €3, C4js €5} the combina-
tion of the solution triples, which yields the maximum of
Fleg, e (1 =1,..., M5, j=1,..., N;). If there is no
dominant peak in the search space (i.e., the maximurm
value of F is less than &f), go to Step 6.

Step 4: Find a New Segment §; which Consists of All the
Largest Connected Groups from 8 and Establish
Correspondences Based on ¢

Let § to be an empty set. The values of (¢q, . .
given by ¢ obtained in Step 3.

For each P; in §, select its neighboring point P} at &,
which yields the minimum value of 8p,;(¢) in Eq. (16)
among its neighboring points. If 8,{€) < g,, we call this
pair (#;, P{) as matched points and include P; in §.

For each R;in 5, consider only those neighboring regions
R/ at 1, which satisfy the following constraint on area:

., €s) are

Mo,
2L |1+ &)+ &) - GEl| <en

Mo, (42)
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Then, among those neighbors, select the R] which yields
the minimum value of 8, (€) in Eq. (26). If 8¢,(€) < &,
we call this pair (R;, R]) matched regions and include R;
in §.

For each L, in §, consider only those neighboring lines
L; at 1, which satisfy the following constraint on the longi-
tudinal location: 8p;; in Eq. (16) of two center points of
L; and L] should be less than 0.4 X length of L,. Then,
among those neighbors, select the L] which yields the mini-
mum value of &, ;(¢) in Eq. (30) among its neighboring
lines. If &, ;(&) < &,, we call this pair (I, L]) matched
lines and include L, in §.

Find all connected groups, each of which contains at
least three features from S. A set of these groups defines
one resulting segment S;.

Step 5: Find the New Largest Connected Group § from T

Delete S, from 7T and find the new largest connected
group S from T. Go to Step 3.

Step 6: Verify the Maiching and Segmentation

Let S, (= 1,..., Ng) be segments of matched features
obtained in the previous steps. For each segment S;, com-

pute ¢; linearly (using the method presented in Sec-
tion 3.5). Then, remove each point pair (#;, P;) from §, if
epi(€)} > 8cor. Similarly, remove each region pair (R;,
R}) from S, if g5 ;(t;) > £, and Temove each line pair
(Lz'; L}r) if EL.Ej(cf) > Egor.

Step 7. Merge the Segments

Let ¢;; be the linearly computed affine parameters corre-
sponding to the segment §; U §;. Merge each pair of seg-
ments §; and §; recursively into one if 55;(%) < By,
Ssj(c;‘,-) << Emg and 6S,USJ-(C!'}) < Emg-

5. IMPLEMENTATION DETAILS AND
EXPERIMENTAL RESULTS

We have applied our algorithm to a large variety of
patirs of images with satisfactory results. Four experimental
results are presented here. We visually check the experi-
mental results by watching alternating frames of matched

features, which is an effective test.
3.1, Implementation

We use a feature point detector which locates local max-
ima and minima of intensity values described in [18]. Re-
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gions are extracted using a method described in [19]. (A
region is defined as a connected set of pixels having inten-
sity values which are similar to those of its surroundings.)
Those regions intersecting the boundary of the image plane
arc removed. We detect lines using a modified version of
the method described in [6].

The values of T, and 7, in Steps 1 and 2 of our algorithm
are set to 50 and 64 pixels, respectively. This implies that
for each feature at 1, we consider only those features at 1,
and 1, which are within 50 and 64 pixels, respectively. The
value of 7; used in generating the line points is 10 pixels,
In Step 1.1 of our algorithm to make lists of neighboring
features within a distance T4, two regions are said to have
similar values of 2D attributes if (i} the difference of aver-
age grey values is less than 15, (ii) the area ratio is between
0.7 and 1/0.7, and (iii) the aspect ratio is between 0.49 and
1/0.49. Two points are said to have similar values of 2D
attributes if the average difference of the grey values of
the corresponding pixels in 7 X 7 windows centered at the
two points is less than 15. Two lines are said to have similar
values of 2D attributes if (i) the difference in orientation
is less than 30 degrees, (ii) the difference in length divided
by length of the longer line is less than 0.4, and (iii) the
difference in average intensity around two lines (see [6]
for detailed definition) is less than 20.

The values of row and column are used to represent the
image coordinates since an affine transformation remains
affine after a linear transformation. The initial range of
each of the two parameters ¢ and ¢; is taken to be from
— T, pixels to T, pixels. The initial value of cach of the
four parameters ¢y, ¢z, ¢4, and ¢s ranges from —1 to 1.
Three resolutions are used for the coarse-to-fine search of
each of the two quantized spaces (cq, ¢, ¢3) and (cs, ¢4,
cs). At each resolution, a voxe! in each space is quantized
by 8 X 8 x 8. Let Ac/*} denote the quantization error of
¢; at the kth resolution where the first and third resclutions
represent the coarsest and finest resolutions, respectively.,
Then, the values of Ac§” and Ac§® are less than 1/2(27,,/
8%), which is equal to 8, 1, and 0.125 at &k = 1, 2, and 3,
respectively. The values of Act®, Act), Act®, and Act® are
less than 1/2(2 x 1/8%), which equals 0.125, 0.016, and
0.002 at k = 1, 2, and 3, respectively. Uncertainty of d,
and d, at the kth resolution due to quantization can be
estimated by

A = [Ac) + [AcfOs] + |acky)
AP = [Ac] + [Acs] + |y,

(43)
(44)

For example, for a pixel at x = y = 100, 4} (or
d$, d@ (or d?), and 4 (or d¥) are equal to 33, 4.125,
and 0.516 pixels. Therefore, to lower the uncertainty, it is
important to reduce the range of values for x and y. In
our impiementation of Step 3 in the algorithm, a center
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FIG. 8. Two segments found in Experiment 3. (a) Segment 1 on the
wall in I;. (b) Segment 2 on the calendar in /;.

of mass for the largest remaining component S is computed
and it is used as a new origin of the image coordinates.
We tried our algorithm with or without using the dynamic
origin and obtained better results with the dynamic origin.
Let £ represent the threshold value in Eq. (32) at the
kth resoiutlon The value of &5 is set to 0.75 pixels, im-
plying that the image errors up to (.3 X V2 2 pixels are
tolerated. At the first and second resolutions, they are set
to the values AcfV (or Ac§’) and Acf” (or Ac?), respec-
tively. Considering the fact that the affine transformations
are an approximation to the displacement field, the value
0.75 is conservative.

The values of N3 and Ny are experimentally set to 15
and 30, respectively, which are adequate to give ail domi-
nant loca! maxima. All the values of wpy;, wry, and wy ;,
are set to 1, for simplicity.

The value of gr in Step 3.4 is 4.5, making each segment
contain more than three features. In Step 4, the value of
g, 18 0.2, The value of e, for Step 6 is 5. The maximum
tolerable average image error e,,, for merging in Step 7 is
set to be equal to £5. The merged segments which contain
less than five features are removed. Note that the distance
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TABLE 3
Number of Correspondences Found for Each Feature Type
in Experiment 3

Feature type N Nz M Feature type Ny N, M
Region 320 310 74 Region 369 357 71
Feature point 302 302 147 Feature point 244 255 56
Line 183 178 85 Line 23 13 5
Line point 115 124 79 Line point 0 0 0

Note. Ny, number of extracted features at ¢1; Ny, number of extracted
features at f; M, number of matched features.

between two segments is not considered when we merge
them.

The £l is varied to evaluate the sensitivity of results.
Results are more sensitive to &5 than to £{!) and /2. Figure
4 shows the average image error (Section 3.5}, the average
correlation error (Section 3.6), and numbers of matched
features and segments for the two images in Experiment
4. As the value of &f is increased, the relative number of
false matches increases, thus increasing the average image
error and the average correlation error (Fig. 4), particularly
for points. Stationary feature points in the background in
the first image of Experiment 4 begin to be matched with
an error of one pixel, for example. Regions and lines are
less sensitive to this mismatching since they are more global
than points. Figure 4d shows that the segmentation capabil-
ity also degrades as the value of &5 is increased. For the
lower values of 5, the numbers of matched features and
segments are too small. Therefore, the value of &5 which
is equal to 0,75 is a reasonable choice.

5.2. Experiment 1

Two image frames of indoor scenes, of size 512 by 512,
are used. These are the second and third frames obtained
from the image database of the 1991 IEEE Workshop on
Visual Motion.

Table 1 shows the number of extracted features and
correspondences found for each feature type. We see that
a fairly good number of correspondences are obtained.

TABLE 2
Number of Correspondences Found for Each Feature Type
in Experiment 2

Note. N1, number of extracted features at 1,5 N, number of extracted
features at ¢,; M, number of matched features.

Figure 5 shows the images, detected points, regions, lings,
and line points. The matching results are also presented
and appear to be good. Note that line points serve as
useful features. We obtain six segments, each of which
corresponds to a part of the scene having similar depth.

5.3. Experiment 2

Two image frames of outdoor scenes, of size 512 by 512,
are used. These images are the fourth and fifth frames,
which were also obtained from the database of the 1991
IEEE Workshop on Visual Motion.

Table 2 shows the number of extracted features and the
correspondences found for each feature type. Figure 6
shows the images, detected points, regions, lines, and line
points. The part of the image corresponding to the road
does not yield good features and therefore no correspon-
dence is obtained there, Overall, the matching results are
satisfactory. We obtain seven segments, each of which con-
tains features, the motion of which is described by a distinct
set of six parameters. i

5.4. Experiment 3

Two frames of size 288 by 360 are vsed. These are the
first and fifth frames obtained from a standard image se-
quence for testing MPEG performance.

Table 3 shows the number of extracted features and
correspondences found for each feature type. Figure 7
shows the images, detected points, regions, lines, line

TABLE 4
Number of Correspondences Found for Each Feature Type
in Experiment 4

Feature type N, Ny M Feature type Ny N M
Region 88 123 13 Region 182 195 47
Feature point 301 302 128 Feature point 195 186 7
Line 106 91 45 Line 59 70 30
Line point 15 16 9 Line point 16 16 8

Note. Ny, number of extracted features at r;; ,, number of extracted
features at f; M, number of matched features.

Note. N\, number of extracted features at ¢,; &z, number of extracted
features at 1, M, number of matched features.
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FIG. 9. Experiment 4, robot images. (a) First image [;. (b) Second image I,. {c) Extracted points and regions in [;. (d) Extracted points and
regions in 7. (¢) Extracted lines and line points in I,. (f) Extracted lines and line points in ;. {g) Matched features in f;. (h) Maiched features in f,.

points, and matching results. Figure 8 shows two resulting
segments corresponding to the wall and the calendar. The
features corresponding to the moving train are not seg-
mented out since feature detectors could not extract good
features from the parts of images corresponding to the
moving train. The matching and segmentation results are
satisfactory, and this example demonstrates the feasibility
of our approach for the segmentation of a scene into inde-
pendently moving objects.

5.5. Experiment 4

Two real images of a PUMA 500 are used. The field of
view of the camera is approximately 13°. The image size
is 384 by 500.

Table 4 shows the number of extracted features and
correspondences found for each feature type. Figure 9

shows the images, detected points, regions, lines, line
points, and matching resuits. The line detector used could
be improved to get better matching results. Figure 10 shows
four resuiting segments. Segments 1 and 3 correspond to
the stationary background and the small arm, respectively.
Segments 2 and 4 are the part of the large arm, although
these two segments are not merged into one segment using
the value of merging threshold &,,, equal to 0.75 (the value
of &,(e;) for i = 2 and j = 4 was 1.32). Segment 3 contains
a small region which should be segmented into the back-
ground. This is because extracted region boundaries are
not perfect and the coefficients of affine transformation
obtained from coarse-to-fine search processes are quan-
tized although the uncertainty at the finest resolation is
small. This example also demonstrates the feasibility of
our approach for the segmentation of a scene.
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6. CONCLUSIONS AND EXTENSIONS

We have described an integrated method which matches
and simultaneously segments multiple features such as
points, regions, and lines from two perspective images. We
have also presented the results of four experiments to
demonstrate our algorithm.

It is well known that region boundary and [ine end points
are unstable. This problem can be partly solved by consid-
ering only centroids for regions and perpendicular distance
for lines, as seen from the experimental results. If regions
and lines fragment or merge due to noise in the projection
process, occlusion, ete., they will not match in our current
implementation.

In our experiments, the algorithm presented gives robust
results for matching and segmentation although segmenta-
tion is harder than matching.

Although feature points were defined as local maxima
and minima of intensity values in this paper, other types
of point features could be used. If more than one atiribute
(for example, intensity maximum and optical flow vector)
is available at the same pixel, the displacement vector at
that pixel is determined by selecting the one which best
satisfies the affine transformations. By considering more
than one type of feature point, we can use more informa-
tion from images, resulting in better performance at the
expense of increased computation.

We plan to extend our method to a sequence of images.
Parallel implementation of the algorithm is also planned.
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FIG. 10. Four segments found in Experiment 4 (a) Segment 1 in /. (b) Segment 2 in /,. (c) Segment 3 in /;. {d) Segment 4 in {,.
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