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Abstract

A video containing multiple objects in rotational and
translational motion is analyzed through a combination of
spatial and frequency domain representations. It is ar-
gued that the combined analysis can take advantage of the
strengths of both representations. Initial estimates of con-
stant, as well as time-varying, translation and rotation ve-
locities are obtained from frequency analysis. Improved
motion estimates and motion segmentation for the case of
translation are achieved by integrating spatial and Fourier
domain information. For combined rotational and trans-
lational motions, the frequency representation is used for
motion estimation, but only spatial information can be used
to separate and extract the independently moving objects.
The proposed algorithms are tested on synthetic and real
videos.

1. Introduction

The estimation of multiple motions in a video sequence,
and its segmentation into independently moving objects, are
required in numerous applications. Although motion analy-
sis is often carried out directly in the spatial domain, it can
also be performed using the frequency representation of the
sequence [1], [3]. Motion estimation based on the Fourier
Transform (FT) of a video sequence offers several advan-
tages: (1) it is robust to global illumination changes. (2) The
inaccuracies in motion estimation near object boundaries
are avoided, since the estimates are not based on spatially
local inter-frame luminance differences, e.g. involving op-
tical flow, rather, they are derived from global intensity dis-
tribution. (3) Computationally, algorithms are available for
efficient FT calculation.

There are a limited number of motion estimation meth-

ods that use the frequency domain. The contributions of the
motion segmentation and estimation algorithms we present
include the following. (1) It can process sequences under-
going time-varying rotations as well as translations. In con-
trast, the few existing FT based approaches use the FT only
for translations [4], [2]. (2) It uses a novel way of deriving
an initial motion segmentation in the frequency domain and
integrating this result with spatial information. This yields
much better results than the existing methods, spatial or FT
based alone, in which motion segmentation is carried out
entirely in the spatial domain.

2. Overview

The main components of our algorithm are as follows:
(1) Translations with time-varying velocity (Sec. 3) are first
estimated in the frequency domain (Sec. 4). These motion
estimates, and the FT of the sequence, form an overdeter-
mined linear system. By solving this system in a Least
Squares (LS) sense, the position, shape and texture of the
moving objects and the background are estimated in a novel
manner (Sec. 5). The LS object estimates have blurry
boundaries, but can be used as a good initial estimates,
which are refined in the spatial domain (Sec. 6).

(2) For time-varying roto-translational motions (Sec. 7),
the frame FTs are mapped to the polar domain. The rota-
tion angles appear as translations in the polar domain, so
they can be recovered through a procedure similar to that
used for translations. The frames are then successively de-
rotated by the estimated object rotation angles, to estimate
the corresponding object translations. Thus, complex ob-
ject motions are fully characterized using the FT data, con-
trary to existing FT based methods, that estimate only trans-
lations. Segmentation is performed in the spatial domain:
each frame is predictively warped by the estimated motions
and compared with the input to find the object that under-
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went that motion. This object is removed from the sequence
and the procedure is repeated for the rest of the moving ob-
jects. Sec. 8 presents experimental results.

3. Formulation for Translation

Let each frame consist of M moving objects l, 1 ≤
l ≤ M , with luminance sl(r̄) at pixel r̄ and velocity
ūl(t). The FT of object l is Sl(ω̄) = Ml(ω̄)ejΦl(ω̄), where
ω̄ = [2πm/N1, 2πn/N2]T , m,n ∈ Z, is the 2-D fre-
quency, N1 × N2 the image size, Ml(ω̄) the FT magni-
tude, and Φl(ω̄) the FT phase. Each object has velocity
ūl(t), so for inter-frame time T , it is displaced by r̄T

l =∫ t+T

t
ūl(τ)dτ , i.e. object luminance s′l after displacement

becomes s′l(r̄) = sl(r̄− r̄T
l ) = sl(r̄−

∫ t+T

t
ūl(τ)dτ), with

FT S′
l(ω̄) = Sl(ω̄)e−jω̄T r̄T

l . For simplicity, let T = 1, so

that r̄k
l =

∫ k

0
ūl(τ)dτ at frame k. The FT of frame k is

Xk(ω̄), 1 ≤ k ≤ N , the measurement noise is denoted by
Vnoise,k(ω̄), and the background area occluded by the mov-
ing objects is denoted by Vbck,k(ω̄). Then the FT X1(ω̄) of
the first frame is

X1(ω̄) = Sb(ω̄)+S1(ω̄)+...+SM (ω̄)−Vbck,1(ω̄)+Vnoise,1(ω̄),
(1)

where vbck,1(r̄) = sb(r̄)mobj,1(r̄) = sb(r̄)(m1(r̄) + ... +
mM (r̄)) is the background area hidden by the M objects
in the spatial domain and Vbck,1 = Sb(ω̄) ∗ Mobj,1 =
Sb ∗ (M1 + ... + MM ) is its FT. Here, mobj,1(r̄) is es-
sentially the foreground mask, which zeroes out each non-
object area ml(r̄). For simplicity, we will assume that the
objects only move against the background and do not oc-
clude each other. The methodology of this paper can be
extended in a straightforward manner to relax this assump-
tion, but we will not do so in this paper, for lack of space.
The FT1 of frame k is written as

Xk = Sb + ... + SMe−jω̄T r̄k
M − Vbck,k + Vnoise,k, (2)

where Vbck,k = Sb ∗ (M1e
−jω̄T r̄k

1 + ... + MMe−jω̄T r̄k
M ).

Stacking the FT’s of the N frames, we get X = Z +
Vnoise − Vbck, where X is an N × 1 data vector, with the
values of each frame’s FT, and Z is an N × 1 vector, whose
kth element (for frame k) is Zk = Sb + S1e

−jω̄T r̄k
1 + ... +

SMe−jω̄T r̄k
M . Vnoise is the N × 1 vector containing the

additive measurement noise, and Vbck,k(ω̄) is an N × 1
vector that represents the occluded background areas for
each frame, k given by Vbck,k = Sb ∗ Mobj,k. We decom-
pose Z as Z = AS, where S(ω̄) is the (M + 1) × 1 FT
vector of the background and the objects, and A(ω̄) is a
N × (M + 1) matrix containing the motion information,

1For simplicity, we omit ω̄ from the function arguments in the sequel.

with row k Ak(ω̄) = [1, e−jω̄T r̄k
1 , . . . , e−jω̄T r̄k

M ]. This
leads to the over-determined system

X = AS + Vnoise − Vbck, (3)

where the objects’ displacement information appears in the
matrix A as a sum of weighted harmonics. Our formulation
aims to extract the object displacements between frames 1
and any subsequent frame k, and segmenting the moving
objects by solving (3).

4. Frequency Translation Estimation

We first consider the estimation of translation between
two given frames, 1 and k. Consider the ratio Φ1,k of the
FTs of frames k and 1:

Φ1,k(ω̄) =
Xk(ω̄)
X1(ω̄)

= ab(ω̄) +
M∑
i=1

ai(ω̄)e−jω̄T r̄k
i + nk(ω̄),

(4)
where, for 1 ≤ l ≤ M

ab(ω̄) =
Sb(ω̄)

Sb(ω̄) + S1(ω̄) + ... + SM (ω̄) + V1(ω̄)
,

al(ω̄) =
Sl(ω̄)

Sb(ω̄) + S1(ω̄) + ... + SM (ω̄) + V1(ω̄)
,(5)

and nk(ω̄) = (Vnoise,k(ω̄)−Vbck,k(ω̄))/(Sb(ω̄)+S1(ω̄)+
... + SM (ω̄) + V1(ω̄)), with V1(ω̄) = Vnoise,1(ω̄) −
Vbck,1(ω̄). From (4) we see that Φ1,k(ω̄) is just a sum
of weighted exponentials, whose inverse FT φ1,k(r̄) is a
weighted sum of delta functions:

φ1,k(r̄) = ab(r̄) +
M∑
i=1

ai(r̄)δ(r̄ − r̄k
i ) + nk(r̄). (6)

The term nk(r̄) contains the measurement noise vnoise,k(r̄)
and the background occlusion vbck,k(r̄). The FT Vbck,k =
Sb(ω) ∗ (

∑M
i=1 Mi(ω)e−jω̄T r̄k

i ) does not include signif-
icant harmonics, which could affect the accuracy of the
motion estimates, so φ1,k(r̄) has peaks at the displace-
ments r̄k

l , 1 ≤ l ≤ M . For better resolution, we es-
timate the energy |φ1,k(r̄)|2 =

∑M
i=1 a2

i (r̄)δ
2(r̄ − r̄k

i ) +∑
i�=j ai(r̄)aj(r̄)δ(r̄ − r̄k

i )δ(r̄ − r̄k
j ) + [ab(r̄) + nk(r̄)]2 +

2
∑

i[ab(r̄)+nk(r̄)]
∑M

i=1 ai(r̄)δ(r̄− r̄k
i ). The cross terms

in the sum are zero for r̄k
i �= r̄k

j , so only the peaks at the true
displacements remain. By taking the squared magnitude of
φ1,k(r̄), the peaks at r̄k

l are enhanced. Detection of these
peaks yields estimates of the object displacements. The last
two lines of |φ1,k(r̄)|2 contain noise terms, which depend
on each frame’s measurement noise Vnoise,k, and the oc-
cluded background terms Vbck,k. These noise terms do not
affect the accuracy of the motion estimates, since they do

2
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not introduce significant peaks at r̄k
i . Estimating the dis-

placements between frame 1, and all other frames yields
the 2D trajectory r̄l(t) of each object, whose velocity is the
time-derivative of r̄l(t), i.e. ūl(t) = ∂r̄l(t)

∂t , defined over all
t, if the trajectories are continuous functions of time.

5. LS Motion Segmentation

5.1. Effect of Background

For the case of pure translations, with constant or time-
varying velocity, an estimate of motion and segmentation
can be obtained in the frequency domain. Equation (3) can
be solved to give the vector S = [Sb, S1, ..., SM ]T con-
taining the FTs of the background and the M moving ob-
jects at frequency ω̄. A straightforward (but erroneous)
estimate of the solution can be obtained by neglecting the
term Vbck(ω̄) and obtaining an LS estimate of the solu-
tion of (3) assuming Vnoise(ω̄) is zero mean. To under-
stand how the error of neglecting Vbck(ω̄) affects the ob-
ject FT estimation, consider the simple example of two ob-
jects in frame 1 that move by r̄l, l = {1, 2}, in frame 2:
X2 = Sb + S1(ω̄)e−jω̄T r̄1 + S2e

−jω̄T r̄2 + Vall,2, where
Vall,2(ω̄) = Vnoise,2(ω̄) + Vbck,2(ω̄). The N1 × N2 LS
solutions Ŝb(ω̄), Ŝ1(ω̄), Ŝ2(ω̄) also include the effects of
Vall,2(ω̄). If we identify the deviations caused by the LS
approximation and Vall(ω̄) by Vb(ω̄), V1(ω̄), and V2(ω̄) re-
spectively, then we can write:

X(ω̄) = Ŝb(ω̄) + Ŝ1(ω̄)e−jω̄T r̄1 + Ŝ2(ω̄)e−jω̄T r̄2

= (Sb(ω̄) + Vb(ω̄))

+ (S1(ω̄) + V1(ω̄)ejω̄T r̄1)e−jω̄T r̄1

+ (S2(ω̄) + V2(ω̄)ejω̄T r̄2)e−jω̄T r̄2 , (7)

If we write Vl(ω̄) = MV,l(ω̄)e−jφv , the error in each LS
estimate is Vl(ω̄) = MV,l(ω̄)e−jφv(ω̄)ejω̄T r̄l , l = {b, 1, 2}.
The term φv(ω̄) changes for each ω̄ in an unknown way,
whereas the term ω̄T r̄l is a fixed repeated pattern given by a
plane whose normal is r̄i. Thus, ejω̄T r̄l forms a conspicuous
part of the solution error since the other part e−jφv(ω̄) is not
necessarily periodic and as noticeable. This suggests that
the recovered background will have a periodic component
in the errors, and, more importantly, that there is a form
of spectral leakage (frequency space blurring) in the object
FTs Ŝl(ω̄), which will appear as sinusoidal artifacts in the
estimates. This prediction is verified in the experiments we
report in Sec. 8.

5.2. Regularization of LS Solution

If the SVD of A is A = UΣV H , the LS solution to (3)
for the noiseless case is given by S = (AHA)−1AHX =

V Σ−1UHX , where Σ−1 is diagonal with values 1/σl for
σl �= 0 and 0 for σl = 0. The smaller singular values corre-
spond to the high-frequency components of the solution, so
small errors in small σl’s introduce large changes in the cor-
responding high-frequency components of S. These errors
appear in the form of large oscillations superimposed on the
solution, and render it useless. To deal with this instability,
the Tikhonov regularization algorithm is used, which, for a
system X = AS minimizes ||AS − X||22 + λ||S||22, where
λ is a positive constant that controls the size of the solution
vector2. The LS solution then becomes

S = (AHA + λI)−1AHX =
M∑
l=1

σl

σ2
l + λ

v̄lū
H
l X, (8)

and the effect of σl � 0 is dampened by the regularization
parameter λ. From (8) we can see that the regularized solu-
tion will be more stable, but also biased, due to the addition
of λ in the denominator, making the LS estimates slightly
smaller, and therefore the object appearance darker than the
actual objects. On the other hand, large values of λ reduce
the accuracy of the LS solutions. Thus, there is a trade-off
in the choice of this regularization parameter, whose ideal
value cannot be determined à priori, as it requires knowl-
edge of the actual solution. For this reason, we empirically
tested numerous values of λ on over 10 different sequences
(including the ones in the Sec. 8), and found that a value
around 1 gave consistently good object estimates. Also, the
LS estimates were robust to small deviations of λ around 1.

5.3. Effect of Noise

As described in Sec. 3, the background areas that are
occluded contribute to the overall errors in the LS solu-
tion of (3). If we take the background occlusion effect
and measurement noise Vall = Vbck + Vnoise(ω̄) into ac-
count in Eq. (8), the LS estimates become Ŝ = (AHA +
λI)−1AH(X − Vall), so there is an error E = Ŝ − S =
−∑M

l=1
σl

σ2
l
+λ

v̄lū
H
l Vall, which depends on Vall, whose val-

ues over all frequencies and frames follow a distribution that
changes with each video. This distribution is not known
à priori, but it affects the error in the LS solution. The
mean error for each frequency ω̄ is then given by E[E ] =
−∑M

l=1
σl

σ2
l
+λ

v̄lū
H
l E[Vall], where the expectation is taken

over the entire video sequence, i.e. over all the frames.
Since Vall is not zero mean, due to the presence of Vbck

term, Ŝ is biased.

2We use the L2 norm ||x||2 =
√

x2
1 + ... + x2

N for the N × 1 vector
x.

3
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6. Integration with Spatial Estimates

The LS object estimates presented above differ from
their true values due to the effect of the background
(Sec. 5.1), and the approximation error introduced by the
regularization (Sec. 5.2). To reduce these errors, we fuse
the results from the frequency domain with complementary
spatial information, as described in the sequel.

6.1. Correlation of LS Solution and Original

Each LS solution sl(x, y) is correlated with the original
frame x1(x, y) in the spatial domain. The normalized cross-
correlation cb(x, y) of sl(x, y) with x1(x, y) is computed
over a square neighborhood Nb(x, y) around pixel (x, y),
and it is high at pixels that belong to object l and low else-
where. The correlation of the LS solution with the original
at all (x, y) gives a “correlation map” C(x, y) containing
the coefficient values cb(x, y) at each pixel (x, y).

The correlation coefficient cb(x, y) follows Student’s
t−distribution, which approaches a Normal distribution as
the number of samples increases. This is expected from the
Weak Law of Large Numbers, since in that case cb(x, y) is
the sum of a large number of samples, and has been verified
by us experimentally. For normally distributed correlation
coefficients, we have Prob(x ∈ object) = P (cb > η) =

Q

(
η−µ

σ

)
, where Q(x) = 1√

2π

∫ ∞
x

e−t2/2dt gives the tail

probability of a Gaussian distribution and µ, σ2 are its mean
and variance, respectively. The 90th percentile of the corre-
lation coefficients is equivalent to P (cb > η) = α, where
α = 0.1, so the threshold for these correlation values is
given by η = µ + σQ−1(α). The correlation coefficients
higher than this threshold are the highest α% of all correla-
tion values, and belong to the moving object.

6.2. Activity Areas

The movement of each pixel is followed over the en-
tire sequence with a local velocity estimate v̄l, to deter-
mine if it belongs to object l. If its positions are cor-
rectly predicted, its values across the sequence differ only
by measurement noise, so its luminance value remains ap-
proximately the same over all frames. Its value at frame
k is xk(r̄) = x1(r̄) + zk(r̄), where x1(r̄) is its lumi-
nance value in the original frame, and zk(r̄) is additive
zero mean Gaussian measurement noise at frame k. If a
pixel is incorrectly followed, its value changes by mk(r̄),
so xk(r̄) = x1(r̄) + mk(r̄) + zk(r̄). Then the problem of
determining if a pixel belongs to object l or not is formu-
lated as a binary hypothesis test:

H0 : dk(r̄) = zk(r̄)
H1 : dk(r̄) = mk(r̄) + zk(r̄), (9)

where dk(r̄) = xk(r̄) − x1(r̄) �= 0. When the pixel is cor-
rectly followed, dk(r̄) follows the noise distribution (Gaus-
sian). Under H1, the data distribution changes significantly,
since a pixel-dependent random quantity (mk(r̄)) is added
to the samples. Its variance increases greatly, because in-
correct prediction of a pixel introduces abrupt changes in
dk(r̄).

To determine whether dk(r̄) belongs to H0 or H1, it suf-
fices to test the nongaussianity of the data. The classical
measure of nongaussianity of a random variable y is the
kurtosis, defined as kurt(y) = E{y4} − 3(E{y2})2. The
fourth moment of a Gaussian random variable is E{y4} =
3(E{y2})2, so its kurtosis is equal to zero. Non-zero val-
ues of the kurtosis kurt(dk(r̄)) show that the pixel has been
incorrectly displaced, so it does not belong to object l, and
zero values show that the pixel indeed moved with v̄l(r̄).

7. Translation and Rotation

In this section we consider M independently moving
objects, where each object l first undergoes a translation,
and then a rotation, with respect to a global coordinate sys-
tem whose origin is in the center of the image. Frame 1
is x1(x, y) = sb(x, y) +

∑M
i=1 si(x, y) + vnoise,1(x, y)

and frame k is xk(x, y) = sb(x, y) +
∑M

i=1 si((x −
xi,k) cos(θi,k)+(y−yi,k) sin(θi,k),−(x−xi,k) sin(θi,k)+
(y − yi,k) cos(θi,k)) + v1,k

bck(x, y) + vnoise,k(x, y), where
(xl,k, yl,k) includes the distance of each pixel (x, y) from
the center of the video frame, and its translation. The rota-
tion appears in the magnitude of each object’s FT, so the FT
Si(ω̄) = Mi(ω̄)ejΦi(ω̄) of object l, from frame 1 to k, is

Sk
i (ωx, ωy) = Mi(ωx cos(θi,k) + ωy sin(θi,k),

− ωx sin(θi,k) + ωy cos(θi,k))ej(Φi(ω̄)−ω̄T r̄i,k),

For Wl,k(ω̄) = Φl(ω̄) − ω̄T r̄l,k, frame k( 1 ≤ k ≤ N ) is

Xk(ωx, ωy) = Sb(ωx, ωy)

+
M∑
i=1

Mi(ωx cos(θi,k) + ωy sin(θi,k),

− ωx sin(θi,k) + ωy cos(θi,k))ejWi,k(ω̄)

+ V 1,k
bck (ωx, ωy) + Vnoise,k(ωx, ωy). (10)

In log-polar coordinates, this becomes

Xk(ρ, θ) = Sb(ρ, θ) +
M∑
i=1

Mi(ρ, θ − θi,k)ejW ′
i,k(ρ,θ−θi,k)

+ V i,k
bck(ρ, θ) + Vnoise,k(ρ, θ)

= Db(ρ, θ) +
M∑
i=1

Di(ρ, θ − θi,k)

+ V 1,k
bck (ρ, θ) + Vnoise,k(ρ, θ), (11)

4
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where we define W ′
i,k(ρ, θ) = Wi,k(ρ, θ + θi) to repre-

sent the phase terms, Db(ρ, θ) = Sb(ρ, θ), and Di(ρ, θ) =
Mi(ρ, θ)ejW ′

i,k(ρ,θ). Thus, the rotation of each object ap-
pears as a translation along the θ axis, analogous to pure
translation case in the x-y space in Sec 3. The inverse trans-
form of Eq. (11) is

xk(xρ, yθ) = db(xρ, yθ) +
M∑
i=1

di(xρ, yθ)ejyθθi,k

+ v1,k
bck(xρ, yθ) + vnoise,k(xρ, yθ), (12)

i.e. a weighted sum of exponentials, similar to Eq. (4). Con-
sequently, the angles of rotation from frames 1 to k can now
be found using the method presented in Sec. 4.

7.1. Translation Estimation

Once each object’s rotation angle is estimated, it is used
to estimate the corresponding translation. The rotations and
translations that are found first are the dominant motions.
Following this, the next strongest motions are estimated,
until all motions have been found. Thus, initially frame k
is de-rotated by the dominant angle θ1,k. This will lead to
the extraction of the corresponding translation r̄1,k. The de-
rotated frame k is expressed in spatial coordinates as

x′
k(x, y) = s′b(x, y) + s1(x − x1,k, y − y1,k) +

+ ... + s′k(x, y) + ... + s′M (x, y)

+ v1,k
bck,rot(x, y) + vk

noise,rot(x, y), (13)

where v1,k
bck,rot, vk

noise,rot represent v1,k
bck and vk

noise in the
de-rotated image, s′b the de-rotated background, and s′k are
the de-rotated objects. The transform of (13) is

X ′
k(ω̄) = S′

b(ω̄) + S1(ω̄)e−jω̄T r̄1,k + ...

+ S′
k(ω̄) + ... + S′

M (ω̄)

+ V 1,k
bck,rot(ω̄) + Vnoise,k,rot(ω̄), (14)

where r̄1,k = (x1,k, y1,k). This expression contains a
harmonic corresponding to the desired displacement r̄1,k,
around which most of the energy of (14) is concentrated.

The de-rotated background term S′
b(ω̄) complicates the

extraction of the dominant motion, as it can introduce sig-
nificant aliasing, so it should be suppressed before the trans-
lations are estimated. The other terms in this expression do
not create aliasing problems, because r̄1,k corresponds to
the dominant motion. This is validated in the experiments,
where it is shown that this translation can be reliably ex-
tracted when the background is suppressed.

8. Experiments

We now present the results of experiments with five
video sequences, chosen to test the various aspects of our

algorithm. Before we do that, it is useful to review the main
sources of inaccuracy in the resulting estimates. First, the
contrast of a moving object against its background deter-
mines the strength of its motion signatures in the FT do-
main: the changes in FT are smaller for smaller contrast, so
the motion estimates are poorer for lower contrast objects.
Second, when an object moves across a homogeneous back-
ground, the motion boundaries are ambiguous and hard to
detect. Both of these disadvantages apply to any motion
analysis method. Third, when certain background areas are
never revealed throughout the sequence, or are visible for
short periods of time, then those parts of the background
are not recovered as well as expected from the analysis of
Sec. 5.3.

1. Constant Translation Sequence: Experiments were
first conducted with a synthetic sequence of a helicopter
(Fig. 1(a)) translating with a constant velocity to the right.
The motion estimation method of Sec. 4 gives a correct es-
timate ū = (0,−8.6), which is constant throughout the se-
quence. The moving object is then separated from the back-
ground in the frequency domain, by finding the LS solu-
tion of Eq. 3. In Fig. 1, there is no sign of the helicopter
on the recovered background, and the shape and texture
of the helicopter have been retrieved correctly. There are
some horizontal artifacts in the recovered object, because
of the spectral leakage from the background occlusion areas
(Sec. 5.1). The recovered background is slightly darker than
in the original frame, due to the regularization (Sec. 5.2).
Correlation in the spatial domain is then used to extract the
moving object more accurately (Sec. 6). Fig. 1(d) shows an
intermediate result, from the correlation of the LS solution
for the object with the original frame using 10 × 10 blocks,
and Fig. 1(e) shows the “activity areas” for this sequence
(Sec. 6.2) after following each pixel. Here, the spatial in-
formation not only complements the LS solution, but the
correlation and activity masks also complement each other.
This is obvious in Figs. 1(f), where the background artifacts
in the correlation and activity masks are in different areas of
the image. The Mean Squared Error (MSE) for the recov-
ered object is MSEheli = 46.7933.

2. Time-Varying Translation: Experiments were con-
ducted with a sequence of two objects undergoing time-
varying translations (Fig. 2(a)). The motion of the two ob-
jects is estimated accurately and the estimates are used to
get the LS solutions for the background and the moving ob-
jects, shown in Figs. 3(a)-(c). In Fig. 3(a) we can also see
a characteristic case of the background not being perfectly
recovered, as it was never completely revealed for a long
enough period of time by the moving squares. This inaccu-
racy in the background estimate was also expected from the
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(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) Original frame. (a) Initially recov-
ered background from LS solution. (b) Re-
covered object from the initial LS frequency
domain solution. (c) Correlation with 2 × 2
blocks. (d) Activity mask obtained from pixel
following. (e) Recovered object after fusion of
LS solution and spatial domain information.

analysis of Sec. 5, since the background occlusion and mea-
surement noise introduce an error Vb(ω̄) in that estimate.

(a)
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Figure 2. (a) Frame 1. (b) Estimated and real
time varying translations as functions of time.

The original frame is first correlated with the LS esti-
mated background to identify the background using both
spatial and FT information. The extracted object areas of
the original frame are then correlated with the LS solution
for object 1, giving an estimate of its area in the frame
(Fig. 4(a)). An activity mask is also calculated for each esti-
mated velocity, giving possible areas for the corresponding
objects (Fig. 4(b)). The combination of these masks leads to
an accurate estimate of the object, as Fig. 4(c) shows, with

(a) (b) (c)

Figure 3. (a) Initially recovered background.
(b) Initially recovered object 1. (c) Initially re-
covered object 2.

(a) (b) (c)

Figure 4. (a) Correlation of original frame with
LS solution for object 1 over 2 × 2 blocks. (b)
Activity mask for object 1. (c) Final recovered
object 1 after integration of LS solution with
spatial information.

errors MSEo1 = 340.7229, MSEo2 = 201.784.

3. Rotation and Translation Sequence: We use the same
initial frame as before (Fig. 2(a)) to create a synthetic se-
quence with two objects that undergo time-varying roto-
translational motions. The dominant angle is found first,
and the frame is derotated by it. The angles are estimated
quite accurately with errors up to 0.08% of the range of ro-
tation values.

4. Real Traffic Sequence: Experiments were conducted
with a real traffic sequence, consisting of two cars that are
turning (Fig. 5(a)). The angles of rotation for each car are
estimated between successive frames and compared against
the ground truth, which is obtained through manual feature
point tracking. The angles are estimated quite accurately
(Sec. 7) with errors up to 0.05% of the range of rotation
values. The frames are de-rotated by the estimated angles
to extract the translations of each object (Sec. 7.1). The es-
timated translations in the horizontal and vertical directions
are also close to their true values with errors up to 0.075%
of the range of translational values. Finally, as Fig. 5 shows,
the bottom right and top right cars are accurately recovered
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(a) (a) (b)

Figure 5. Real traffic sequence: (a) Recon-
structed bottom right car. (b) Reconstructed
top right car.
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Figure 6. (a) Frame 1 of the car sequence. (b)
Frame 58 of the car sequence. (c) Horizontal
translation estimates as functions of time for
both cars. (d)LS estimate of Background.

with MSEo1 = 97.7, MSEo2 = 57.65.

5. Real Car Sequence: Experiments were conducted
with a real sequence of two cars (Fig. 7(a)-(b)) translating
with time varying velocities (Fig. 7(c)).

The time varying translational velocities for each car
are estimated using the FT of the frames, and these esti-
mates are then used for the LS estimates of the moving cars
(Sec. 3). As Figs. 7(d)-(f) show, the background and the two
objects are recovered quite accurately. The solution for the
second car (Fig. 7(f)) is less accurate, as expected, since this
is a dark object moving against a dark background. Never-
theless, the shape and even details of the car (its wheels,
windows and bumper) have been captured.

The LS solutions are correlated with the actual frames to

(a) (b)

(c) (d)

Figure 7. LS estimates of: (a) White Car. (b)
Dark car. (c) Finally recovered white car. (d)
Finally recovered dark car.

find candidate object areas. “Activity masks” correspond-
ing to each velocity are also extracted, and help eliminate
artifacts from the correlation masks. The cars are finally re-
covered accurately, as shown in Figs. 7(g)-(h) (MSEo1 =
71.9371, MSEo2 = 77.5467). Some parts of the road
around each moving car are extracted along with it, since
they do not change significantly after motion compensation.

9. Conclusions/Discussion

A novel hybrid method for motion analysis has been
presented. The motion estimation is achieved in the fre-
quency domain, and the segmentation of the sequence is
based on both frequency and spatial data. The proposed
approach avoids problems of spatial methods, such as sen-
sitivity to global illumination changes, problems at moving
object boundaries, or high computational cost.
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