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ABSTRACT 

The inherently causal nature of conventional single-pass error dif­
fusion (EO) ,halftoning results in asymmetric diffusion of error. 
This results .in the introduction of directional artifacts in the out­
put halftone. ,In this paper we propose a novel two-pass algorithm 
which achieves symmetric error diffusion by using a zero-phase 
signal transfer function. We determine conditions under which 
isotropic diffusion! of error and noise suppression are achieved. Ex­
perimental'results demonstrate that the proposed algorithm breaks 
up worms and randomizes their direction, thus making the output 
halftone more visually appealing as compared to conventional er­
ror diffusion. 

t. INTRODUCTION 

Digital halftoning is the process of representing a continuous tone 
image by a perceptually truthful bilevel image. Among the various 
digital halftoning algorithms available in literature, the error diffu­
sion algorithm (originally proposed in [I]) is one of the most pop­
ular ones due to the high perceptual quality of generated halftones. 
Figure 2 shows the block diagram for error diffusion. Let x(i,j) 
denote the (i,j)th pixel of the input continuous tone image. In er­
ror diffusion, the current input gray level pixel x' (i, j) is quantized 
to a one bit value b(i,j) = Q(x'(i,j)). The quantization error 
e(i,j) = x'(i,j) - b(i,j) is weighed and causally 'diffused' to 
future pixels x(i, jl), The distribution of the error e(i,j) is based 
on the error diffusion filter hem, n). 

As shown in Figure I, conventional one-pass error diffusion 
(ED) leads to the introduction of directional artifacts in the halftone. 
This has been referred to in halftoning literature as the introduc­
tion of worms. Work on sigma-delta modulation refers to this phe­
nomenon as the introduction of limit cycles or idle tones. Kite 
et al. [2] argue that these refer to the same phenomenon and are 
due to the asymmetric distribution of erro�. They also argue that 
isotropic diffusion of error would lead to these artifacts being less 
noticeable. However, isotropic error diffusion is not possible in 
single-pass ED owing to the causal nature of the ED process. 

Previous work on suppressing these artifacts using single-pass 
ED includes the use of random perturbation (dithering) of the er­
ror filter weights or quantization thresholds to break up directional 
artifacts (for example, the void-and-cIuster dither method [4, 13]). 
This however, results in the addition of perceptual noise to the 
halftone.. Jarvis [5] and Stucki [6] propose the use of error fil­
ters with larger support to reduce these artifacts. Other algorithms 
use non-standard scans (eg. the serpentine scan [7]) to achieve 
this goal. The above approaches are constrained by the inherent 

-This author is supported on the Eastman Kodak Graduate Fellowship 
I Knox [3] showed that this problem (which he refers to as the 'knight's 

move' problem, see Figure 3) is caused by the causal nature of the error 
filter. 

Fig.t. Cropped parts of halftoned lena at 96 x 96 dpi: (a) depicts 
diagonal worms, (b) depicts vertical worms. 

causality of single-pass diffusion and are thus unable to achieve 
isotropic error diffusion. 

Iterative schemes have been proposed in [8, 9) to achieve sym­
metric, non-causal error diffusion (or equivalently zero-phase dif­
fusion of error). However, iterative schemes typically have high 
computational complexity. For example, the scheme proposed in 
[8) is reported to typically require about 10 iterations for conver­
gence. Fan [10) proposes a two-pass error diffusion algorithm to 
achieve symmetric error diffusion. However, his algorithm dif­
fuses error symmetrically only in the horizontal direction - anti­
causal feedback is absent in the vertical direction, and thus the 
diffusion of error is not truly with zero phase. 

We note that achieving isotropic diffusion of error without in­
curring the computational complexity of iterative techniques is a 
difficult problem. This can be seen as follows: while halfton­
ing pixel x' (i, j), the error is diffused to its adjoining pixels. To 
achieve isotropic diffusion of error, this error needs to be diffused 
in all directions. However the error cannot be diffused to pixels 
halftoned prior to x(i,j) since they have already been quantized. 
In this work, we alleviate this problem by halftoning an input 256 
gray level image to an intermediate number of levels (say 16) using 
causal ED and then halftoning this intermediate image to a biIevel 
image anti-causally. The proposed algorithm ensures isotropic dif­
fusion of error by choosing the intermediate level such that the 
zero-phase condition is explicitly satisfied. We determine condi­
tions under which isotropic error diffusion is achieved and select 
algorithm parameters to further ensure noise suppression. Results 
demonstrate that the proposed algorithm reduces directional arti­
facts without incurring the high computational costs of iterative 
techniques [8],[9]. 

The paper is organized as follows: Section 2 briefly reviews 
the model of ED used in the paper. Section 3 describes the pro­
posed algorithm. Results are presented in Section 4. A summary 
of the algorithm and the results is given Section 5. 
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Fig, 2. Error Diffusion Block Diagram 
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Fig, 3. The pixel at the knight's move does not receive error feed­
back (even indirectly) from the pixel being halftoned 

2, MODELING ERROR DIFFUSION 

We use the model proposed in [2, II] in our work. In this section 
we briefly describe this model. 

Figure 4 shows the equivalent circuit of error diffusion with 
the quantizer replaced by a constant linear gain K and independent 
additive noise q(i, j). The system transfer function is as follows: 

B(z) = IHK ';)H (z )X(z)+ (1- H(z»Q(z) (I) 
= S(z)X(z)+ N(z)Q(z) (2) 

where S(z) and N(z) are the signal transfer function (STF) and 
the noise transfer function (NTF) respectively. z = [z""zlllt de­
notes the two-dimensional z-transform. 

The linear gain K in the model is an empirically determined 
quantity that models the correlation between the error image and 
the original image. It is noted in [2], that the value of K depends 
on the choice of the filter H (z) and is image-independent. For the 
Floyd-Steinberg [1] filter, [2] estimates K � 2. 

We note that in order to achieve isotropic diffusion of error, 
the STF S(z) should have zero phase. In the case of single-pass 
error diffusion, this is unachievable since the error filter H (z) is 
causal and thus has non-zero phase. In the next section, we show 
how a zero-phase STF can be achieved using a two-pass algorithm. 
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Fig, 4. Equivalent circuit for error diffusion with quantizer mod­
eled as linear gain plus additive noise 
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Fig. S. Equivalent circuit of proposed algorithm 

3. PROPOSED ALGORITHM 

The proposed algorithm uses two error diffusion passes to achieve 
a zero phase STF. In the first pass (forward pass), the input image is 
halftoned, using a causal filter, so as to reduce the number of gray 
levels to an intermediate number of levels .6.in > 2. This interme­
diate image is then halftoned in the opposite direction (backward 
pass) using a anti-causal filter to obtain the bi-Ievel output image. 
As we shall see later, choosing .6.in judiciously leads to isotropic 
diffusion of error. The algorithm can be formally described as fol­
lows : 

1. In the first pass, the input continuous graytone image I( i, j) 
is quantized to a uniform intermediate quantization level 
.6.in > 2. The conventional error diffusion procedure . is 
used except that the quantizer produces a multilevel output 
instead of a bilevel output. 

2. The output image h (i, j) from the first pass is spatially in­
verted along the vertical and horizontal directions resulting 
in an image IR(i , j) = II (n - i, m - j) where n, mare 
the horizontal and vertical dimensions of I. 

3. In the second pass, error diffusion is used to quantize IR (i, j) 
to a bilevel output BR(i,j). 

4. BR(i,j) is spatially inverted resulting in halftoned image 
B(i,j). 

3.1. Conditions for Isotropic Error Diffusion 

In this section we determine conditions for isotropic distribution 
of error. Figure 5 shows the equivalent circuit model of the pro­
posed algorithm, using the gain plus additive noise quantization 
model. K 1 and K 2 are the equivalent linear gains of the two passes 
and HI (z), H 2 (z) are the causal FIR error filters used in the two 
passes. Then: 

h(z) = 

IR(Z) = 

BR(Z) = 

B(z) = 

SI(z)I(z)+ 

h(Z-I) 

S2(z)IR(Z)+ 
BR(Z-I) 

(3) 

(4) 
(5) 
(6) 

Here Si(Z) and Ni(z)are the ST F and NTF, respectively, for 
the ith pass. 

Thus, 

(7) 
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where N(z) is a noise tenn that is independent of the input 
image I(z). The equivalent STF is therefore equal to the product 
82(Z-I).81(Z), where: 

1 + (Kl(�in) -l)Hl(z) 

where the functional dependence of the gain factors K1 , K 2 
on the intermediate quantization level �in has been emphasized. 
Since the step-size of the first quantizer is �in, the value of Kl is 
dependent on the intermediate quantization level An. Similarly, 
since the input to the second quantizer is itself coarsely quantized 
(with step size �in) rather than continuous, the value of K2 is also 

dependent on �in. 
For isotropic error diftUsion, we require that this equivalent 

STF have zero phase. From (9), we note that this is achieved if the 
following relation holds: 

(9) relates the filter H2(Z) to Kl,K2 and Hl{Z). Next, we 
select values for these parameters such that (9) is satisfied and the 
effect of the quantization noise is suppressed. 

3.2. Parameter Selection for Noise Suppression 

The equivalent NTF is; 

N(z) = S2(z-l)Nl(Z)Ql(z) + .N2(z-l)Q2(z-lXIO) 
= 82(Z- 1)(1 - Hl(Z»Ql(Z) + (11) 

(1 - H2(Z- I»Q2(Z- 1) 

As pointed out by Ulichney in [7], the addition of blue noise 
achieves visually pleasing halftones. Equivalently, the NTF N (z ) 
should be highpass. From (12), we see that this holds if both 
(I - Hl(Z» and (1 - H2(Z» are high pass filters (equivalently, 
if Hl(Z) and H2(Z) are low-pass filters). Choosing Hl(Z) as a 
low-pass filter, Kl and K2 should be selected so as to ensure that 
H2(z) is also low-pass. Ensuring that H2(Z) be lowpass is equiv­
alent to ensuring that first term in (9) (which is allpass) vanishes. 
Thus, for N(z) to be highpass, the conditions required are: (I) 
H1(z) should be lowpass (2) �in should be selected such that 

(12) 

Further, from (9), we see that Kl = K2 results in H2{Z) = 

H 1 (z). Hence, the proposed algorithm achieves a zero-phase equiv­
alent STF with noise suppression if the linear gains and error filters 
of the two passes are equal and the error filters are lowpass . 

The functional dependence of the gain K on the quantizer 
step-size is unknown for the case of 2D error diftUsion. However, 
as in [2J, we observe that the gains K1, K2 are image-independent 
and depend on the choice of Hl(Z), H2(Z). Then, for a given 
error filter, it is possible to estimate the value of �in for which 
the zero-phase condition is satisfied, by using a set of test images 

to experimentally calculate the K1, K2 values for a range of �in 
values. K1, K2 can be estimated by performing a least-squares 
fit of e( i, j) and :z;' (i, j). The experimentally determined value of 
�in that satisfies (12) can then be used for halftoning any input 
images. 

4. RESULTS 

This section presents a comparison of the proposed algorithm with 
previous approaches that aim at removing directional artifacts. Re­
sults are presented for a 256-level gray-scale input lena image. All 
halftones are displayed at a resolution of 144 x 144 dpi. Results 
of [9] and [4] have been taken from [12]. 

For the proposed algorithm, the value of the intermediate num­
ber of grey levels �in was determined as follows. For a given error 
filter, the values of Kland K2 were experimentally estimated over 
a range of intermediate number of grey levels. The value of �in 
for which (12) was selected. As expected, the values of Kland K2 
(and �in) were found to be image-independent and were found 
to be dependent on the error filter used. Further, it was found 
that the value of Kl is nearly unity for most values of �in' This 
is in accordance with classical quantization theory which predicts 
that quantization error is independent of the input signal for high­
resolution quantization. As �in decreases, the value of Kl was 
found to increase (since the first-pass quantizer became increas­
ingly coarser) while K2 decreased (as the second-pass quantizer 
became increasingly finer). 

Figure 6(a) shows the halftone produced by conventional error 
diffusion using the Floyd Steinberg filter [1]; clusters of worms can 
be clearly seen under the right eye, around the nose and running 
down the entire left side of the face. Further, in each cluster, worms 
orient along a common direction. Figure 6(b) shows the halftone 
produced by the serpentine scan algorithm [7]. The serpentine scan 
reduces worms at 45°, but does not break up the vertical worms 
running down the left side of the face. 

Figure 6(c) shows the halftone produced by ordered dithering 
[4]. As can be seen, dithering breaks up worms, but at the expense 
of adding considerable perceptual noise. Figure 6(d) shows the 
halftone obtained by using the iterative algorithm proposed in [9]. 
The algorithm results in the addition of considerable noise to the 
image. It also causes loss of sharpness i.e. the structural details 
of the image are poorly reproduced. Moreover, the algorithm has 
high computational complexity; it requires 30 iterations to produce 
the final halftone. 

Figure 6(e) shows the halftone produced by the proposed algo­
rithm using the FS error filter for both passes. The value of �in, 
selected as explained above, was 6 i.e. the intermediate image 
produced at the end of the first pass had 6 grey levels. In Figure 
6 (a) and Figure 6(b), worms cluster in predominantly one direction 
(such as the vertical worms on the left side of the face) resulting 
in easily observed artifacts. By contrast, worms are shorter and 
randomized in Figure 6(e), illustrating the isotropic diffusion of 
error produced by the proposed algorithm. Further, the halftone 
produced by the proposed algorithm is considerably less noisy as 
compared to Figure 6(c) and Figure 6(d). 

Figure 6(f) shows the halftone produced by the proposed al­
gorithm using the 3 x 5 error filter proposed in [8] H=[O 0 0 0.15 
0.10; 0.060.10 0.150.10 0.06; 0.03 0.06 0.1 0.06 0.03]. �n = 5 
was found to satisfy (12) and was used to generate results using 
the filter proposed in [8]. This error filter is designed such that 
the frequency response does not have a bandpass nature. As can 
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be seen, the output halftone is considerably sharper than in the 
other cases. Also, directional artifacts are completely absent in the 
halftone. However the halftone is noisier as compared to Figure 
6(a) and Figure 6(e). T his illustrates an important feature of the 
proposed algorithm - any error filter can be used in the implemen­

tation and the remaining algorithm parameters can be accordingly 
determined. Thus, the error filter can be selected on the basis of 
the requirements on the output halftone . Specifically, the error fil­
ter selected results in a tradeoff between the addition of noise in 
smooth regions and faithful reproduction of high-frequency and 
textured regions. 

s. SUMMARY 

In this paper, we have proposed a two-pass algorithm that achieves 
symmetric error diffusion by explicitly ensuring a zero-phase STF. 
The key step is the choice of the intensity range (�'n) of the inter­
mediate image. The proposed algorithm breaks up worms and ran­
domizes their direction, thus making the output halftone more vi­
sually appealing as compared to conventional error diffusion. The 
proposed algorithm has the advantages of low-complexity, com­
pared to iterative schemes, image-independence . 
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(a) 

(e) (d) 

(e) (f) 

Fig. 6. lena halftoned using: (a) Floyd Steinberg Algorithm. (b) 
Floyd Steinberg with serpentine scan. (c) Void-and-cluster ordered 
dither. (d) Zeggel Bryngdahl's iterative algorithm. (e) Proposed 
algorithm using the Floyd Steinberg filter. (f) Proposed algorithm 
with the filter proposed in [8]. (Halftoned images are shown at 
144 )( 144 dpi). 
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