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Abstract

Traditionally, motion estimation and segmentation have
been performed mostly in the spatial domain, i.e., using the
luminance information in the video sequence. Frequency
domain representation offers an alternative, rich source of
motion information, which has been used to a very limited
extent in the past, and on relatively simple problems such as
image registration. We review our work during the last few
years on an approach to video motion analysis that com-
bines spatial and Fourier domain information. We review
our methods for (1) basic (translation and rotation) motion
estimation and segmentation, for multiple moving objects,
with constant as well as time varying velocities; and (2)
more complicated motions, such as periodic motion, and
periodic motion superposed on translation. The joint space
analysis leads to more compact and computationally effi-
cient solutions than existing techniques.

1. Introduction

This paper presents an overview of our work in the last
few years on motion analysis. The unifying theme of this
work is simultaneous use of both spatial domain and fre-
quency domain representations of a given video sequence.
Our presentation is in two major parts. First, we review our
approach to estimation of the two basic components of gen-
eral image motion - translation and rotation. Second, we
summarize our work on the estimation of specialized, more
complex motions, illustrated here by the case of periodic
motion. In both cases, we allow multiple objects under mo-
tion, segment each object out and estimate the parameters
of each motion.

Motivation: Most work on video motion analysis has
been carried out directly in the spatial domain. However,

the spatial locality of the representation has the disadvan-
tages of lack of sensitivity to spatially diffuse phenomena
such as gradual illumination changes. Some of these prob-
lems can be handled by using alternative representations.
For example, a frequency domain representation, e.g., us-
ing the Fourier Transform, or Time-Frequency Distributions
(TFDs) [6], [3], has strengths that are complementary to
those of the spatial domain representations. Some advan-
tages of the frequency approach include: (1) It is robust
to global illumination changes. (2) Inaccuracies in motion
estimation near object boundaries are avoided, since the es-
timates are not based on spatially local inter-frame lumi-
nance differences, rather on global intensity distribution.
(3) Efficient algorithms are available for FT computation.
(4) There is no need for the commonly used separate stages
of feature detection and matching as in feature based spatial
methods [11]. Some work has been done to take advantages
of the frequency based representation. However, frequency
domain methods have their own limitations. The main diffi-
culty they encounter is the so-called “localization problem”,
which is a direct result of their global nature. Specifically,
they are able to detect and estimate motions, but they do not
directly relate each estimate to the associated frame pixels,
thus not providing object localization or motion segmenta-
tion.

Our work has focused on joint use of both spatial and fre-
quency representations. The advantages of one help over-
come the shortcomings of the other, and lead to more versa-
tile methods. We limit our overview to the case of rigid ob-
jects being imaged from a still camera. Sec. 2 first presents
the case of two-frame translational and rotational motion,
which is equivalent to the case of multiframe motion with
constant velocity. Sec. 3 considers the problem of general,
multiframe motion, with time varying velocities. Sec. 4
considers the problem of periodic motion analysis. Sec. 5
presents concluding remarks.
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2. Constant Velocity Motion

In this case, the Fourier transform is initially used to es-
timate translational or roto-translational motions between
pairs of frames. Motion segmentation follows, using both
Fourier and spatial data.

2.1. Translation Estimation

Let each frame consist of M moving objects i, 1 ≤ i ≤
M , with luminance si(r̄) at pixel r̄ and displacement b̄i(n)
at frame n. The FT of object i is Si(ω̄) = Mi(ω̄)ejΦi(ω̄),
where ω̄ = [2πm/N1, 2πn/N2]T , m,n ∈ Z, is the 2-D fre-
quency, N1 ×N2 the image size, Mi(ω̄) the FT magnitude,
and Φi(ω̄) the FT phase. The FT of frame k is A(ω̄, k),
1 ≤ k ≤ N , the measurement noise is Vnoise,k(ω̄), and the
background area hidden by the moving objects is denoted
by Vbck,k(ω̄). Then the FT of frame k is A(ω̄, k) = Sb(ω̄)+∑M

i=1 Si(ω̄)e−jω̄T b̄i(k) − Vbck,k(ω̄) + Vnoise,k(ω̄). Stack-
ing the FT’s of the N frames, we get the over-determined
system

A = HS + Vnoise − Vbck, (1)

where A is an N × 1 data vector, with the values of
each frame’s FT, and H is an N × (M + 1) matrix, con-
taining the motion information, with row k Hk(ω̄) =
[1, e−jω̄T r̄1(k), . . . , e−jω̄T r̄M (k)]. Vnoise is the N × 1
vector of measurement noise, and Vbck,k represents the oc-
cluded background areas.

2.2. Phase Correlation for Multiple Mo-
tions

For the translation between frames 1 and k, we consider
the ratio Φ1,k of their FTs:

Φ1,k(ω̄) =
A(ω̄, k)
A(ω̄, 1)

= γb(ω̄)+
M∑
i=1

γi(ω̄)e−jω̄T b̄i(k)+nk(ω̄).

(2)
γb(ω̄) = Sb(ω̄)/(Sb(ω̄) +

∑M
i=1 Si(ω̄) + V (ω̄, 1)),

γi(ω̄) = Si(ω̄)/Sb(ω̄) +
∑M

i=1 Si(ω̄) + V (ω̄, 1)),
and nk(ω̄) = (Vnoise,k(ω̄) − Vbck,k(ω̄))/(Sb(ω̄) +∑M

i=1 Si(ω̄) + V (ω̄, k)), V (ω̄, k) = Vnoise,k(ω̄) −
Vbck,k(ω̄). The inverse FT φ1,k(r̄) is a weighted sum of
delta functions, whose peaks give the M displacements be-
tween frames 1 and k.

φ1,k(r̄) = ab(r̄) +
M∑
i=1

ai(r̄)δ(b̄ − b̄i(k)) + nk(r̄). (3)

This yields the 2D trajectory b̄i(k) of each object. Displace-
ments between frames 1 and k can be estimated by simply
dividing the motion estimates b̄i by k − 1.

2.3. Roto-Translational Motion Estimation

Motivated by FFT-based techniques for image registra-
tion [9], we have developed a method for the estimation
of multiple rotations and translations in a video sequence.
Consider an image f(x, y) and its rotated and translated ver-
sion

fr(x, y) = f((x − x0)cos(θ0) + (y − y0)sin(θ0),
− (x − x0)sin(θ0) + (y − y0)cos(θ0)). (4)

The FT of the rotated image is given by

Fr(ωx, ωy) = F1(ωxcos(θ0) + ωysin(θ0),

−ωxsin(θ0) + ωycos(θ0))e−j(ωxx0+ωyy0). (5)

In the log-polar domain, the magnitudes of the two Fourier
transforms are Mr(ρ, θ) = M(ρ, θ − θ0), where ρ =

log
√

ω2
x + ω2

y and θ = tan−1

(
ωy

ωx

)
, so a rotation is rep-

resented by a translation in the frequency domain, in log-
polar coordinates. This indicates that rotational motion can
also be extracted from frequency domain data in a similar
manner to translational motion [1]. Therefore, for brevity,
whenever possible we will avoid a separate discussion of
the rotational component in the rest of the paper.

2.4. Initial Segmentation in Frequency Do-
main

Once the translational (and rotational) motions have been
estimated, the linear system of Eq. 1 can be solved in a Least
Squares sense to estimate object appearance and segmen-
tation in all frames. Since this is an inverse problem, it is
often ill-posed, making regularization necessary for reliable
solution [2], [10]. As the experiments described later in this
section show, the least squares estimates retain significant
information from the data, such as the shape and texture of
the objects. They also separate the background from the
objects and the multiple objects amongst themselves.

2.5. Final Segmentation by Fusion of Spa-
tial and Frequency Domains

The LS object estimates presented above differ from
their true values due to the occlusions of the background
(Vbck,k(ω̄) terms, unaccounted for in the LS estimates), and
the approximation error introduced by the regularization.
To overcome these errors, we fuse the Fourier domain ob-
ject estimates with the spatial data. The fusion is performed
by comparing the least squares object estimates with the
original video frames, and refining the object and back-
ground areas accordingly.
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Experiments Below we present representative results of
the motion estimation and segmentation algorithm pre-
sented above.
1. Parking Lot Sequence: Experiments are conducted with
a sequence of a car translating in a parking lot (Fig. 1(a)). Its
translation is correctly estimated via Eq. (2) and the LS seg-
mentation successfully separates the background from the
car (Figs. 1(b)-(c)). Fusion with spatial information leads
to the final car segmentation in Fig. 1(d).

(a)

Recovered Background with regularization

(b)
Recovered Car with regularization

(c)

Finally recovered car using the activity mask and correlation mask

(d)

Figure 1. Parking Lot Sequence: (a) Original
Frame (b) LS recovered background. (c) LS
recovered car. (d) Recovered car after spatial
fusion.

2. Traffic Sequence: Experiments are conducted with a
real traffic sequence, consisting of two cars that are turn-
ing (Fig. 2(a)). The angles of rotation for each car are es-
timated between successive frames and compared against
the ground truth, which is obtained through manual feature
point tracking. The angles are estimated with errors up to
0.05% of the range of rotation values. The estimated trans-
lations in the horizontal and vertical directions are also close
to their true values with errors up to 0.075% of the range of
translational values. Finally, as Fig. 2 shows, the bottom
right and top right cars are accurately recovered.

3. Time-Varying Velocity Motion

A straight forward approach to estimation of time-
varying velocities that we have reported in [1] is to recur-
sively divide the video sequence into subsequences until the
total displacements across the subsequences becomes linear
in eacah number of frames, suggesting that the motion in the
subsequence can be estimated as having a constant velocity.

(a)
(a)

(b)

Figure 2. Traffic sequence: (a) Original frame.
(b) Reconstructed bottom right car. (c) Re-
constructed top right car.

We will omit the details of this simple method here. Be-
low we present an alternative approach, in which we extract
time-varying velocity profiles using Time-frequency distri-
butions (TFDs) analysis of the non-stationary spectral con-
tent of the video sequence. TFDs are used as they allow
simultaneous estimation of the entire trajectories. Fusion
with spatial information is needed for separation of the mul-
tiple time-varying motion trajectories into differently mov-
ing objects, and motion based segmentation.

3.1. Short Term Fourier Transform

The time-varying spectrum content of non-stationary
signals can be captured by TFDs, which are essentially the
FT, applied over small, windowed, time segments of a sig-
nal. The most common and simplest TFD is the Short-Term
Fourier Transform (STFT). By filtering the signal with an
appropriate low-pass function around time t, we obtain an
approximate representation of the signal’s spectral content
at that instant. For a one-dimensional signal s(t), in discrete
time, the STFT is defined as

STFTs(t, ω;h) ≡
+∞∑
−∞

s(τ + t)h∗(τ)e−jωτ , (6)

which means it is essentially the FT of a windowed signal.
The window function controls the relative weight imposed
on different parts of the signal, leading to an inherent trade-
off between time and frequency resolutions. When h(t) has
higher values near the center of the interval (the observa-
tion point t), the STFT emphasizes local quantities. A win-
dow that is compact in time leads to higher time resolution,
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whereas a window peaked in the frequency domain gives
better frequency resolution.

3.2. Velocity Estimation

Consider a scene containing M objects, with FTs Si(ω̄),
1 ≤ i ≤ M , moving independently against a background
which has been detected (e.g. by median filtering over time)
and eliminated (replaced by 0) in the images. Frame k is
A(ω̄, k) =

∑M
i=1 Si(ω̄, 1)e−jω̄T b̄i(k). A slice of A(ω̄, k) at

(ωx, 0, k) has a time-varying spectral content, consisting of
M time-varying frequencies at each time instant k:

Ω̄x = ωxB̄x = ωx

⎛
⎜⎝

b1
x(1), b1

x(2), . . . , b1
x(N)

...
...

...
...

bM
x (1), bM

x (2), . . . , bM
x (N)

⎞
⎟⎠ .

(7)
Thus, at each time instant 1 ≤ k ≤ N , the M translations
can be estimated from the corresponding time-varying fre-
quencies. By applying the STFT to A(ω̄, k), we can extract
the time-varying power spectrum of this signal, which is a
2D function of frequency and time, with its power concen-
trated along ridges in the time-frequency plane. The TFD
maxima for the signal A give the time-varying frequency
content ω̄x(k) of A. Since ω̄x(k) is directly proportional
to the time-varying object displacement, Eq. (7) enables
the estimation of the horizontal displacement (bx(1) = 0)
b̄x(t) =

[
0, bx(2), . . . , bx(N)

]
. By setting ωx = 0,

the same method can be used to estimate the vertical dis-
placements by(k) from A(0, ωy, k).

Experiments We present results on a video sequence of
people walking. We demonstrate how our method can be
used to estimate multiple motions with the number of mov-
ing objects changing with time: There are initially three
people in the scene, but one of them exits the scene near
the middle of the video (Fig. 3). Two of the people are
walking together, so they are considered as one moving en-
tity, whereas the third person (who eventually leaves) is the
second moving entity. The STFT indeed has two ridges for
the first part of the sequence, and only one ridge for the rest
of it, so its maxima trace two curves with different lengths
(Fig. 4(a)): the first corresponds to the two people walking
to the left, throughout the entire sequence, and the second
to the person who is walking to the right, and exits after
several frames.

The successful joint use of frequency and spatial domain
information for motion estimation and segmentation moti-
vates the use of both domains for more complicated or spe-
cialized types of motions. Periodic motion is one such class
of motions which are common in nature and often asso-
ciated with biological movements, e.g., walking, speaking
and gesturing.

Frame 10

(a)

Frame 50

(b)

Figure 3. A sequence with the number of
moving objects changing: (a) Frame 10. (b)
Frame 50.

STFT for sequence with people walking

Time
50 100 150

50

100

150

200

250

(a)

0 50 100 150
0

50

100

150

200
STFT maxima for sequence with people walking

Time

two people walking
together

person who exits

(b)

Figure 4. Sequence with a changing number
of people: (a) STFT. (b) The maxima of the
STFT extract the two trajectories simultane-
ously.

4. Periodic Motion

There has been extensive work on estimation of peri-
odic motions, but the existing research is limited to simple
cases, involving a single, pure periodic motion [8]. Also,
current methods involve elaborate feature or region corre-
spondences [5] and manual intervention. We take advan-
tage of the frequency space signature of multiple periodic
motions to extract them, using TFDs, which leads to a sim-
ple formulation. Unlike any of the previous methods, we
extract multiple periodic trajectories simultaneously. Our
approach is also robust to deviations from strict periodicity,
which is necessary in many real life sequences. Below we
first present our work on pure periodic motions, and then on
periodic motion superposed on translation.

4.1. Pure Periodic Motion

Consider frame a(x, y, n). We construct a frequency
modulated (FM) signal, whose 2D frequency is modulated
by the time-varying displacements of the objects, via the
technique of constant μ propagation [6]. Essentially, we
estimate the 2D FT at a constant 2D “spatial frequency”
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μ̄ = [μ1, μ2], as follows:

A(μ1, μ2, k) =
∑

r̄

M∑
i=1

[si(r̄ − b̄i(k)) + vnoise(r̄, k)]ej(μ1x+μ2y)

=
M∑
i=1

Si(μ1, μ2)ej(μ1bx
i (k)+μ2by

i
(k)) + Vnoise(μ1, μ2, k).

The frequencies ωi(k) = μ1b
x
i (k) + μ2b

y
i (k) in

A(μ1, μ2, k) are extracted by applying the STFT (Sec. 3.1).
The motion appears in each ωi(k) as a weighted sum of the
horizontal and vertical displacements, but this can be over-
come by estimating A(μ1, μ2, k) at μ2 = 0 and μ1 = 0.
This gives ωi(k) = μ1b

x
i (k) and ωi(k) = μ2b

y
i (k) respec-

tively, so the horizontal and vertical displacements are sep-
arated.

Thus, the dominant frequencies at each time k are ex-
tracted, leading to a multicomponent signal, consisting of
the M periodically varying frequencies ωi(k). The peri-
odic nature of the motions allows their separation in an
efficient manner. For object i, we get the periodic signal
b̄x
i = [bx

i (1), ..., bx
i (N)], which represents its motion over

time. We sum the M signals b̄x
i of all objects i at each

instant k, to form ḡx = [gx(1), ..., gx(N)] =
∑M

i=1 b̄x
i ,

with values at each frame k (1 ≤ k ≤ N ) given by
gx(k) =

∑M
i=1 bx

i (k). The resulting 1D function ḡx is
a sum of periodic functions b̄x

i , with different periods T x
i

(1 ≤ i ≤ M ). By applying traditional spectral analy-
sis methods [7] to ḡx, we can obtain its M frequencies ωx

i

(1 ≤ i ≤ M ), and the corresponding periods T x
i = 1/ωx

i .

Segmentation Once the different periods are estimated in
the sequence, the moving objects can also be extracted us-
ing this information. By correlating frames that are sep-
arated by an integer number of periods, we expect to get
higher correlation values in the area of the periodically
moving object. Since the motions are periodic, we have
bx
i (k) = bx

i (k + T x
i ), by

i (k) = by
i (k + T y

i ) for object i. We
consider T x

i = T y
i = Ti for simplicity, but the same anal-

ysis can be applied when T x
i �= T y

i . Therefore, we can ex-
tract the jth object by correlating frames k and k′ = k+Tj :
since only that object is expected to re-appear in the same
position in those frames, the correlation values will be high-
est in the pixels in its area.

4.2. Periodic Motion Superposed on Trans-
lation

The formulation we have used allows easy estimation of
periodic motions superposed on translations. An example is
walking, where the legs move periodically but the moving
entity is also translating. Correlation-based methods cannot
deal with such motions, because of the shifting position of

the periodically moving object. The time-varying trajectory
b(k), which is used to create the FM signal, is of the form
b(k) = α ·k+bP (k), where 1 ≤ k ≤ N , α is a constant and
bP (k) is the periodic component of the motion. The FM sig-
nal we create via μ-propagation is: z(k) = ejμ(α·k+bP (k)),
whose phase is φz(k) = μ(α · k + bP (k)). The TFDs esti-
mate its frequency, i.e. the time-derivative of φz(k), given
by:

ωz(k) =
∂(jμ(α · k + bP (k)))

∂k
= jμαk +

∂bP (k)
∂k

. (8)

Consequently, the translational component of the motion
becomes a simple additive term, whereas the periodicity of
bP (k) is retained in the extracted frequency. This elimi-
nates the need to align the video frames as is essential in
traditional methods.

Segmentation Segmentation of periodically moving ob-
jects cannot be performed directly in terms of the periodic
motion parameters, since the object has also translated. This
difficulty can be easily overcome by estimating the “mean”
translation between frames, via their FT [1], [4]. If there
are M objects in the sequence, where object i is displaced
by b̄i(n) from frame 1 to k, the “mean” translation can be
estimated by Eq. (3). Thus, the peaks of φ1,k(r̄) estimate
the “mean” translations b̄i(k) of object centroids, between
frames 1 and k (e.g. a walking person’s body but not the
periodically moving legs and arms).

Experiments We now present the results of our method
on two sequences.
1. Walking Sequence: This sequence contains a pure pe-
riodic motion superposed on translation. We estimate the
ground truth periods of the arms and legs to be 5 from ob-
servation. Our algorithms extract these parameters correctly
using STFT. Fig. 6 shows the results only for the horizontal
motion of legs, as the arm motion results are almost identi-
cal. The mean translation is then estimated to be 135 pixels
via Eq. (2), and the image is shifted back to a common loca-
tion in all frames in order to extract the periodically moving
legs.

Frame 12

(a)

Frame 60

(b)

Figure 5. Walking Sequence: (a) Frame 12. (b)
Frame 60.
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STFT for x dir. in Walking Seq.

Time
20 40 60 80 100 120 140 160

50

100

150

200

250

(a)

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

200

Normalized Frequency (×π rad/sample)

P
ow

er
 (

dB
)

Pseudospectrum Estimate via MUSIC

T=5

(b)

Figure 6. Walking Sequence: (a) 2D STFT for
the horizontal (leg) motion (μ2 = 0). (b) The
power spectrum for the horizontal direction
correctly finds T = 5.

2. Swings Sequence: This sequence shows two children on
swings (Fig. 7(a)), moving with the same period, T = 2.5,
but different phase, as they start off from different positions.
The period estimate T = 2.875 is quite close to its observed
value of T = 2.5, and allows the successful segmentation
of the children (Fig. 7(b), (c)). It should be noted that the
method succeeds despite the fact that the children bodies
change non-rigidly during the motion (e.g. legs folding or
extending). ). The results of the segmentation are shown by
drawing the circumscribing window which contains them in
all frames, instead of a tight segmentation.

(a)
(b) (c)

Figure 7. Swings sequence: (a) Frame 10.
Segmentation results for (b) boy. (c) girl.

5. Conclusions

Our recent approach to motion analysis has been pre-
sented. Motion estimation is achieved in the frequency do-
main, and the segmentation of the sequence is based on both
frequency and spatial data. The proposed approach avoids
problems of spatial methods, such as sensitivity to global il-
lumination changes, problems at moving object boundaries,
and high computational cost. The joint space analysis can
also be used for efficient and robust estimation of multi-

ple time-varying motions, as well as more specialized mo-
tions, such as periodic ones, via the use of time-frequency
distributions. Our approach overcomes many limitations of
existing methods, such as sensitivity to noise or local illu-
mination changes, because of the global nature of the time-
frequency domain processing and the joint use of spatial
and frequency information. Future directions of research
include extending this method to the problem of motion es-
timation and segmentation with a moving camera, and to
non-rigid objects.1
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