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Abstract. We address the problem of estimating the structure and motion of a smooth curved object from its
silhouettes observed over time by a trinocular stereo rig under perspective projection. We first construct a model for
the local structure along the silhouette for each frame in the temporal sequence. The local models are then integrated
into a global surface description by estimating the motion between successive time instants. The algorithm tracks
certain surface features (parabolic points) and image features (silhouette inflections and frontier points) which are
used to bootstrap the motion estimation process. The entire silhouettes along with the reconstructed local structure
are then used to refine the initial motion estimate. We have implemented the proposed approach and report results
on real images.
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1. Introduction

As an object moves with respect to a camera ob-
serving it, the deformation of its silhouette over time
reflects the characteristics of its shape and motion. For
objects with little or no surface detail such as surface
markings or texture, silhouettes are indeed the most
important cues for the estimation of object structure
and motion, and several methods have been proposed
for structure estimation from silhouettes underknown
camera motion (Blake and Cipolla, 1992; Boyer and
Berger, 1997; Giblin and Weiss, 1987; Kutulakos and
Dyer, 1994; Szeliski and Weiss, 1993; Vaillant and
Faugeras, 1992; Zheng, 1994). These approaches have
demonstrated that given a set of three or more nearby
views of a smooth object, the structure of the object
up to second order can be obtained along its occluding
contour.

∗This work was performed while Tanuja Joshi was with the Beckman
Institute, University of Illinois, Urbana, IL 61801, USA.

Here, we address the problem of estimatingboth the
structure and motionof a smooth object from its sil-
houettes observed over time by a trinocular stereo rig
(see Cipolla et al., 1995; Giblin et al., 1994 for recent
approaches in the monocular case). The proposed ap-
proach will be useful in a situation in which the viewer
is a passive observer and has no knowledge or con-
trol of the motion of the object in the scene (Kutulakos
and Dyer (1994) have developed a complementary ap-
proach, in which a viewer plans its motion for building
a global model of an object). The main application of
our technique is in automatic model construction, e.g.,
for recognition, rendering, or virtual reality.

1.1. Problem Statement and Approach

Consider a smooth curved object and a camera ob-
serving it. The viewing cone grazes the object along
the occluding contourand intersects the image plane
along thesilhouetteof the object. Since, by definition,
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the surface normal is orthogonal to the corresponding
viewing ray at each point of the occluding con-
tour, both the 3D occluding contour and the 2D
silhouette depend on the relative positions of the cam-
era and the object. In particular, when the camera moves
relative to the object, the silhouettes appearing in suc-
cessive images will be the projections of different 3D
contours on the surface. In contrast, although the pro-
jections of viewpoint-independent object features such
as corners or surface creases appear to move in the
image as the observing camera moves in space, they
remain the projections of static 3D points.

In this paper, we address the problem of estimat-
ing the structure and motion of a smooth curved object
from its silhouettes observed over time by a trinocular
stereo rig under perspective projection. To relate the
successive silhouettes, a model for the local structure
is constructed that can be used to estimate the mo-
tion. We use trinocular imagery for our analysis, since
the three images can be used to recover the model pa-
rameters of the local structure (up to second order).
As noted by others (Blake and Cipolla, 1992; Vaillant
and Faugeras, 1992), trinocular imagery is possibly
beneficial in one more way: three frames are suffi-
cient to differentiate between viewpoint-dependent and
viewpoint-independent edges in the image. Thus, the
input of our algorithm consists of a sequence of triples
of images taken by a trinocular stereo rig over time
(Fig. 1). The local structure is estimated using the three
silhouettes observed at each time instant.

Note that we need to establish a relationship or cor-
respondence between points on pairs of silhouettes. As
noted earlier, the 3D occluding contour changes as the

Figure 1. Block diagram of the approach.

object or its observer moves in space, therefore there is
no true 3D point-to-point correspondence between suc-
cessive silhouettes. For the triple of images observed at
a given time by the three cameras, we take advantage
of the known epipolar geometry to establish correspon-
dences between distinct 3D points lying on a common
epipolar curve and then estimate local structure para-
meters as explained in Section 2.

Establishing correspondences between images taken
by a single camera at successive time instants is more
complicated since the epipolar geometry is unknown
in this case: unless we know the correspondences we
cannot estimate the motion, but we need to know the
motion, or at least the epipolar geometry, to establish
the correspondences for all the points on the silhouette.
To bootstrap the matching and motion estimation pro-
cesses, we first use detectable and trackable silhouette
features—namelyinflectionsand frontier points—to
construct an initial estimate of the unknown motion. In
turn, this enables us to estimate the epipolar geometry,
thus allowing the identification of correspondences for
the rest of the silhouette. We then iteratively refine the
motion estimate, updating the correspondences for all
the silhouette points at each iteration.

The rest of this paper is organized as follows:
Section 2 presents an algorithm for structure esti-
mation using trinocular imagery. The algorithm used
for motion estimation from dynamic silhouettes
under perspective projection is discussed in Section 3.
To demonstrate the feasibility of our method, expe-
rimental results using sequences of real images are
presented throughout. We conclude with comments in
Section 4.
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2. Structure Estimation Using
Trinocular Imagery

2.1. Previous Work

The study of the quantitative relationship between the
shape of a surface and its silhouette(s) was pioneered
by Koenderink (1984) and Giblin and Weiss (1987).
Koenderink (1984) investigated the shape information
contained in asinglesilhouette and proved that the sign
of the observed surface’s Gaussian curvature at an oc-
cluding contour point is the same as the sign of the
silhouette’s curvature. Giblin and Weiss (1987) were
the first to exploitmultiple silhouettes to reconstruct
the shape of a smooth object. Their approach is based
on the fact that a smooth surface (excluding the con-
cavities that are never visible on the silhouettes) is the
envelope of its tangent planes. Assuming that the view-
ing directions correspond to a great circle of directions,
they reduced the problem of analyzing the envelope
of tangent planes to the simpler problem of computing
the envelope of tangent lines in a plane. They recon-
structed the object surface by obtaining the depth, the
Gaussian curvature, and the mean curvature along the
occluding contour.

Since this early work, several methods have been
proposed for structure estimation using silhouettes un-
der general known camera motion (Blake and Cipolla,
1992; Boyer and Berger, 1997; Giblin and Weiss, 1987;
Szeliski and Weiss, 1993; Vaillant and Faugeras, 1992;
Zheng, 1994). They have demonstrated the feasibility
of determining the structure of a smooth object up to
second order along its occluding contour from a set
of three or more nearby views. Blake and Cipolla
(1992) have presented a differential formulation for
the case of a continuous sequence of images taken
under general known motion. Vaillant and Faugeras
(1992) have shown how a triple of silhouettes can be
used to reconstruct a local second-order model of the
surface along the occluding contour. Their algorithm
projects three matching viewing rays onto theradial
plane(i.e., the plane containing the central ray and the
surface normal), then estimates the curvature of the
radial curve (i.e., the intersection of the radial plane
with the surface) by constructing a circle tangent to
the three projected rays. More recently, Szeliski and
Weiss (1993) have used the epipolar plane instead of
the radial plane for the estimation of one of the surface
curvatures. For the case of multiple frames, they have
applied tools from estimation theory (Kalman filtering

and smoothing) to make optimal use of each measure-
ment. Although their method is quite robust, it is exact
only for the case of linear camera motion. Recently,
Boyer and Berger (1997) have developed an algorithm
that is applicable to the general motion case without
having to make any approximations. This method also
builds a second-order local model of the surface, but it
relies on an exact depth computation formulation.

The approaches to shape reconstruction from sil-
houettes discussed so far address the problem of
constructinglocal surface models along the occlud-
ing contour. In contrast, Zheng (1994) has studied the
reconstruction ofglobal 3D models from silhouettes.
His algorithm takes as input a continuous sequence of
images taken with pure rotation about a fixed axis, and
analyzes the spatio-temporal volume obtained from the
image sequence. Occluding contours are differentiated
from fixed edges by exploiting the fact that the trace
of an occluding contour in the spatio-temporal volume
is different from the trace of a fixed 3D edge. Concave
parts of the model can also be identified. One of the
main applications considered is the construction of hu-
man face models. In related work, Seales and Faugeras
(1994) have shown how to integrate the local models of
Vaillant and Faugeras (1992) into global surface mo-
dels, and Zhao and Mohr (1994) have developed a
method for constructing B-spline surface models from
a sequence of silhouettes.

We will next describe our structure estimation algo-
rithm. It is related to the approaches of Vaillant and
Faugeras (1992) and Szeliski and Weiss (1993), and it
constructs a local paraboloid model of the surface along
the occluding contour from a triple of silhouettes. The
corresponding equations are derived in Section 2.2. We
obtain the parameters of this model at each point by first
finding correspondences among the three frames of the
trinocular rig, as described in Section 2.3. Section 2.4
presents our method for estimating the model parame-
ters. Experimental results on synthetic as well as real
images are reported in Section 2.5. We discuss pos-
sible ways to distinguish silhouettes from viewpoint-
independent edges in Section 2.6.

2.2. Modeling the Local Structure

The local structure (up to second order) at a sur-
face point P is defined by the 3D location ofP in
some global coordinate frame (in our case, the coordi-
nate frame of the central camera), the surface normal
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at P, the two principal directions in the tangent plane
and the principal curvatures. At each pointP, we de-
fine a local coordinate frame (Xl ,Yl , Zl ) whose ori-
gin coincides withP, the Xl -axis being aligned with
the outward normal, and theYl and Zl -axes being
aligned with the principal directions. The local sur-
face up to second order is a paraboloid, given by the
equation

Xl = 1

2
κ1Y2

l +
1

2
κ2Z2

l , (1)

whereκ1 andκ2 are the principal curvatures atP. The
signs ofκ1 andκ2 define the point type: ifκ1 andκ2

have the same sign (resp. opposite signs),P is an ellip-
tic (resp. hyperbolic) point. The elliptic points project
onto convex silhouette points while the hyperbolic
points project onto concave ones. If eitherκ1 or κ2

is zero,P is a parabolic point and the silhouette has an
inflection (Vaillant and Faugeras, 1992; Koenderink,
1984; Blake and Cipolla, 1990). Equation (1) can be
rewritten in matrix form as:

QT
l M l Ql = 0, (2)

where M l is a symmetric 4× 4 matrix andQl =
[Xl ,Yl , Zl , 1]T is the vector of homogeneous coordi-
nates of a pointQ on the paraboloid atP.1

Figure 2. Projection geometry.

The rigid transformation parameters defining the lo-
cal coordinate frame atP with respect to the coor-
dinate frame of the central camera, together with the
principal curvaturesκ1 andκ2, completely determine
the local structure atP. Let (X,Y, Z) be the camera-
centered coordinate frame, where theZ-axis coincides
with the optical axis and theXY-plane is the image
plane (Fig. 2). Let the pointP (which is the origin
of the local frame) be at(X0,Y0, Z0) in the camera-
centered frame.

We denote the angle made byXl axis (the surface
normal,NP) with the normal to the silhouette (np) by
ζ as shown in Fig. 2.2 We denote the angle between
the X axis and the normal to the silhouette byθ and
the angle between the viewing direction and one of the
principal directions (say theZl axis) byγ .

The six-tuple (θ, γ, ζ, X0,Y0, Z0) defines the local
frame with respect to the camera-centered frame. To
completely describe the object surface locally, we need
to specifyθ, γ, ζ, X0,Y0, Z0, κ1 andκ2 for each point
on the silhouette. A pointQ in the local coordinate
frame defined at pointP can be represented in the co-
ordinate frame of the central camera by

Q= T0 R0 Ql , (3)

where T0 is the 4× 4 matrix for a translation by
(X0,Y0, Z0),R0 is the 4× 4 matrix for the rota-
tion between the two coordinate frames, andQl =
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[Xl ,Yl , Zl , 1]T and Q = [X,Y, Z, 1]T are the ho-
mogeneous coordinate vectors ofQ in the local and
camera-centered frames respectively. After eliminat-
ing Ql between (2) and (3) we obtain the equation of
the paraboloid in the camera-centered frame as:

6
def=QTMQ = 0, (4)

where

M = T−1T
0 R0 Ml R−1

0 T−1
0 . (5)

By definition, the surface normal at the contour point
P is orthogonal to the viewing direction. This condi-
tion can be expressed as:

NP · VP = 0, (6)

whereNP = [ ∂6
∂X ,

∂6
∂Y ,

∂6
∂Z ]T , andVP = [X0,Y0, Z0]T

(Fig. 2). This is a linear condition in (X,Y, Z), imply-
ing that the contour of the paraboloid is a planar curve.
Eliminating Z between (4) and (6) gives the equation
of the silhouette in the image coordinates, which is a
conic section.

The paraboloid model described in this section is
used to model the structure at each point along the
silhouette. From a single projection of the paraboloid,
we can obtain five constraints on the eight structure
parameters (θ, γ, ζ, X0,Y0, Z0, κ1 andκ2):

• The surface normalNP at P is orthogonal to the
viewing directionVP. Also the tangenttp to the
silhouette atp lies in the tangent plane atP, im-
plying thatNP is orthogonal totp. Thus knowing
tP andVP we can compute the surface normalNP

completely:

NP = tp × VP. (7)

This gives the anglesθ andζ directly.
• The image coordinates(x0, y0) of p give two con-

straints onX0,Y0 andZ0:
x0 = f X0

Z0
,

y0 = f Y0

Z0
,

(8)

where f is the focal length.

• The curvature of the silhouette atp gives a constraint
onκ1, κ2 andγ .

To complete the local structure model, we need to
estimate the depthZ0 and obtain two more constraints
onκ1, κ2, andγ . As explained in Section 2.4 we obtain
the required constraints using the matched points from
the other two images of the trinocular imagery.

The estimation of structure at a point relies on the fact
that correspondence can be obtained in all the images of
the trinocular imagery at a given time. At degenerate
situations (such as viewing a hyperbolic patch along
asymptotic directions), we cannot find reliable corres-
pondences and hence do not get a reliable structure
estimation.

The next section presents a method for establishing
the correspondences.

2.3. Finding Correspondences

When the relative motion between the object and the
camera is known for a pair of images (either in the
trinocular stereo rig or in the sequence taken by a cam-
era), we can define an epipolar plane for each point in
each image. LetI1 and I2 be the two images taken
by two cameras with optical centersC1 andC2 respec-
tively. The epipolar plane for these two cameras and a
point p1 (which is the projection of a contour pointP1)
in imageI1 is defined as the plane passing throughp1,
C1 andC2. For two imagesI1(t) and I1(t + 1) taken
by a camera at timest and t + 1, the epipolar plane
for a point p1 in I1(t) is defined as the plane passing
throughp1 and the instantaneous translational velocity.
In either case, the epipolar lines are defined as the in-
tersections of the epipolar plane with the two image
planes.

Similar to the conventional stereo case, we can match
points lying on corresponding epipolar lines. The dif-
ference here is that the two matched image points are
not projections of the same 3D point (Fig. 3). Matching
based on epipolar geometry was employed in previous
approaches as well (Blake and Cipolla, 1992; Szeliski
and Weiss, 1993; Vaillant and Faugeras, 1992; Joshi et
al., 1994).

Using the epipolar plane for cameraC2 we can find
a match pointp2 in image I2. Similarly if we have a
third cameraC3, the corresponding epipolar plane can
be used to find a match pointp3 in image I3. Thus
we have a triple of points matched in the three images
using the epipolar geometry.3
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Figure 3. Epipolar geometry.

Consider for a moment a continuous relative mo-
tion between a camera and an object. At each point
on the silhouette, the points matched using the
instantaneous epipolar geometry trace a surface curve
everywhere tangent to the corresponding family of
viewing rays. This is theepipolar curve(Blake and
Cipolla, 1992; Szeliski and Weiss, 1993; Vaillant and
Faugeras, 1992). In the trinocular imagery case, the
points matched using epipolar geometry will lie on
the corresponding epipolar curve (Fig. 3). The epipolar
curve is regular at points such asP1 in Fig. 3, where
the surface normal is not perpendicular to the epipo-
lar plane. However, at points such asQ in Fig. 3, the
epipolar plane is tangent to the surface, and the surface
pointsQ1 andQ2 merge. Thus the matched pointsq1

andq2 are the projection of the same 3D pointQ. The
epipolar curve degenerates at such points and has a cusp
(Giblin and Weiss, 1995). Points likeQ are thefrontier
pointsfor the corresponding camera motion (Giblin et
al., 1994). We will use them to estimate the motion
parameters as explained in Section 3.

2.4. Structure Estimation

Since the epipolar curve is tangent to the view line at
every point, we can estimate the osculating circle to the
epipolar curve by finding the circle that is tangent to the
three viewing rays. When the three optical centers of
the trinocular imagery are collinear, the three images
share a common pencil of epipolar planes, and the three

Figure 4. Estimating the osculating circle.

viewing rays are coplanar. For general camera confi-
gurations however, the three rays are not coplanar, and
we project them onto a common plane.

As shown in Fig. 4, in general there are four cir-
cles tangent to a set of three lines in a plane (Vaillant
and Faugeras, 1992). But if we know which side of
each view line the object lies, the circle can be de-
tected uniquely (the solid circle in Fig. 4). The point
where this circle touches the central view line is an es-
timate of the 3D surface point. This gives the depth of
the point along the central view line. The curvatureκe

of the circle is an estimate of the curvature of the epipo-
lar curve. We can compute the normal curvatureκn of
the surface along the view line (which is the tangent
direction of the epipolar curve) usingκe and the angle
β between the surface normal and the epipolar plane
normal:

κn = κe cosβ. (9)

Knowing the normal curvature gives us a constraint
on the surface curvaturesκ1, κ2 and the angleγ , since
the normal curvature along a tangent direction making
an angleβ ′with one of the principal directions is related
to κ1 andκ2 by the Euler formula (do Carmo, 1976):

κn = κ1 cos2 β ′ + κ2 sin2 β ′. (10)

Here,β ′ = π
2−γ . We obtain one more constraint on

the surface structure based on the fact that the tangent to
the 3D contour is along a direction conjugate to the view
line (Koenderink, 1990).4 Once the depth of the points
along the silhouette is computed, we can estimate the
direction of the tangent to the 3D contour; this gives a
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constraint onκ1, κ2 andγ . This constraint, along with
the constraint given by the curvature of the silhouette in
the central image, and the constraint given by Eqs. (9)
and (10) give us three equations which are solved to
obtain the values of the structural parametersκ1, κ2

andγ .

2.5. Implementation and Results

Before presenting our results, let us make a few remarks
about our implementation. Because the epipolar geo-
metry is known for the three cameras, we first identify
the frontier points as points with surface normal parallel
to the epipolar plane normal. We then find a correspon-
dence between the sets of frontier points such that the
matched frontier points lie on the corresponding epipo-
lar lines. A match between the frontier points induces
a match between the sections of the silhouettes lying
between the frontier points. We then use the epipolar
lines to find a match for each point on these sections.
A simple method for finding the epipolar match of a
silhouette pointp1 in imageI1 is to search for the sil-
houette point in imageI2 that lies on the epipolar line.
However, because we have the silhouette in imageI2

in discrete form, we can at most find a point, sayp2,
with the shortest distance from the epipolar line. To
improve the accuracy of the reconstruction, we use in-
terpolation to construct a more accurate intersection of
the silhouette with the epipolar line. We find the neigh-
boring pointp3 of the pointp2 such thatp2 andp3 lie
on opposite sides of the epipolar line and use linear in-
terpolation to estimate the intersection of the silhouette
and the epipolar line.

Figure 5. Error plots. (a) Depth error in mm vs. cosβ for stereo angles of 5◦, 10◦, and 20◦; (b) error in radius of curvature in mm vs. cosβ
for stereo angles of 5◦, 10◦, and 20◦.

It should also be noted that our method for construct-
ing a local model of the surface structure is only an
approximation, since we project the three viewing rays
into a common plane before estimating the osculating
circle of the epipolar curve. We have also implemented
the exact method proposed by Boyer and Berger (1997),
where the paraboloid model is constructed without any
approximation, but the results have not proven to be
significantly better in our experiments.

2.5.1. Synthetic Data. We have applied our structure
estimation algorithm to synthetic data corresponding
to a sphere of radius 101.33 mm being observed by a
trinocular rig from a distance of 1500 mm. The focal
length is 25 mm, and the cameras are positioned at
three points on a great circle centered at the center of
the sphere, making the three viewing directions non-
coplanar. Because a sphere is observed, the depth of
each point on the occluding contour is constant and the
normal curvature along each view ray is equal to the
inverse of the radius of the sphere.

As we move along the silhouette, the angleβ be-
tween the surface normal and the epipolar plane nor-
mal changes. It gets smaller as we approach a frontier
point. Figure 5(a) displays the plots of the depth error
as a function of cosβ for different values of the stereo
angle. We can see that for a given stereo angle, the
depth estimation becomes unreliable as we approach
a frontier point. The main reason for this behavior is
that at the frontier point, the epipolar curve has a cusp,
and hence our structure estimation—which is based
on fitting an osculating circle to the epipolar curve—
fails.
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Figure 5 also demonstrates the effect of changing the
stereo angle. The depth error gets larger as we increase
the stereo angle (this is unlike the conventional stereo
case). This behavior is due to the fact that the three
non-coplanar view rays are projected onto a common
plane. As the stereo angle becomes larger, the non-
coplanarity of the view rays increases, increasing the
error due to projection. A similar behavior is observed
for the error in the radius of curvature, as shown in
Fig. 5(b). The error becomes larger as we approach a
frontier point and as the stereo angle is increased.

2.5.2. Real Data. We have applied the method des-
cribed here to three trinocular sequences of real im-
ages. These were generated using a single calibrated
camera observing an object placed on a turntable. We
have simulated trinocular imagery by taking three im-
ages a fixed angle apart. A set of such triples taken
successively constitutes a sequence.

In these experiments, images were acquired by a
CCD camera with a 25 mm lens at a resolution of
640× 480 pixels. To estimate the intrinsic parame-
ters of the camera, and the axis of rotation of the turn-
table, first a non-planar calibration grid was placed on
the turntable, and a sequence of fourteen images was
acquired. For each image, Tsai’s method was used to
estimate the intrinsic and extrinsic parameters (Tsai,
1987). The extrinsic parameters were then used to de-
termine the axis of rotation.

Image edges were detected by thresholding and link-
ing. The linked edges were smoothed with Gaussian
filter. For the smoothed curve, a cubic polynomial was
fit over a sliding window of constant arclength, and
the curvature and tangent at each point on the image
curve were computed using the coefficients of the cubic
fit.

Figures 6 and 7 present sample results on one of
the sequences. Figure 6(a)–(c) shows a sample triple
of images of this sequence. Figure 6(d)–(f) shows the
detected contours in the corresponding images. The re-
constructed 3D contour is displayed in Fig. 6(g), and
the recovered Gaussian curvature along the contour
is shown in Fig. 6(h). The gaps in the reconstructed
contour occur because, as we approach the frontier
points, i.e., as the angle between the surface normal
and the epipolar plane normal becomes smaller, the
epipolar-match-based reconstruction becomes less re-
liable. In fact, we do not estimate the structure at the
frontier points. Figure 7 shows the improvement in
the depth and curvature values reconstructed using the

linear interpolation described in Section 2.5. To im-
prove the smoothness of the plots further, especially
the Gaussian curvature ones, which depend on second
derivatives, an alternate approach would be to use B-
splines, since that would directly yield derivatives.

Figures 8 and 9 show sample results for the bottle
and duck sequences.

2.6. Discriminating between Viewpoint-Dependent
and Independent Edges

It is desirable for an algorithm to detect the cases for
which it is not applicable and to signal such cases to
the user of the algorithm. In the algorithms presented
here, we assume that the edges present in the scene are
silhouettes. In this section, we address the problem of
distinguishing silhouettes from viewpoint-independent
edges in the scene, such as orientation boundaries or
surface markings.

The viewpoint-independent edges can be considered
to be viewpoint-dependent edges in the limit, where
the radius of curvature becomes zero. Here the epipo-
lar curve has radius of curvature equal to zero as well.
Hence our structure estimation which is based on fit-
ting an osculating circle to the epipolar curve fails.
It is important to detect these edges, and treat them
separately. Blake and Cipolla (1992) and Vaillant and
Faugeras (1992) have shown that three images taken
from known relative positions are sufficient to differ-
entiate between viewpoint-dependent and viewpoint-
independent edges in the scene.

It can be seen intuitively as follows: for a pair of
images seen from two cameras, we can find a match
for a point using the epipolar geometry. Assuming
the edge to be viewpoint-independent, we can estimate
the corresponding 3D point using triangulation. If we
have another frame, we can estimate the 3D point us-
ing this frame as well. If the two estimated 3D points
coincide, i.e., if the three lines of sight at the matched
points are congruent, it is a viewpoint-independent
edge; otherwise, it is a viewpoint-dependent one.

The above references have demonstrated that this
distinction can be made even in the presence of noise.
Once this distinction is made, they can be treated sep-
arately. In fact, motion estimation algorithms based
on viewpoint-independent edges can be utilized to fur-
ther constrain the motion parameters. See (Arbogast
and Mohr, 1992; Faugeras and Papadopoulo, 1993)
for motion estimation based on viewpoint-independent
edges.
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Figure 6. Squash data: (a)–(c) a sample triple of images of the trinocular imagery; (d)–(f) corresponding detected contours; (g) recovered 3D
contour; (h) recovered Gaussian curvature along the contour.

3. Motion Estimation

3.1. Previous Work

Motion estimation from silhouettes is more difficult
than from fixed 3D features because of the viewpoint-
dependent nature of the occluding contours. One of the
first efforts in this area is due to Rieger (1986). For
the special case of orthographic projection of a smooth
object rotating about a fixed axis, he noted an impor-
tant property of the changing occluding contours: even
though they slip over the surface with rotation, there

are a few fixed points (the frontier points mentioned
earlier) that lie at the intersection of the successive oc-
cluding contours. Taking advantage of some a priori
information, Rieger showed that the angle of gaze and
the depth of the point can be recovered.

This idea has been extended further by Giblin et al.
(1994), who have investigated the recovery of structure
and motion from a monocular sequence of silhouettes.
They consider the case of a smooth curved object ro-
tating about a fixed axis with constant angular velocity,
and they have shown that, given a set of orthographic
silhouettes covering a complete rotation of the object



40 Joshi, Ahuja and Ponce

Figure 7. Effect of interpolation: (a)–(b) Depth around the silhouette before and after interpolation, respectively; (c)–(d) the Gaussian curvatures
along the silhouette before and after interpolation, respectively.

about a fixed axis, the rotation axis and velocity can be
recovered along with the visible region of the object
surface. For the case of known angular velocity, they
have also shown that the rotation axis can be recovered
from the silhouettes of the object over a short time in-
terval, and reported experimental results on synthetic
data.

Recently, Cipolla et al. (1995) have attacked the
general motion case. They, too, use the frontier points
to constrain the motion of the viewer. After deriving
properties of the normal velocity at the frontier points,
they have developed an iterative procedure to estimate
the essential matrix between a pair of images. They
have reported the problem of sometimes converging to
a local minimum due to a bad initial guess.

Our method also uses the frontier points. However,
we use these only to get an initial estimate of the trans-
lation for a given estimate of the rotation. We solve
the problem of obtaining a good initial point for our
iterative method by using another set of features: the
inflections of the silhouette.

We obtain 3D contours on the surface in the succes-
sive framesI1(t) and I1(t + 1) of the central camera
using trinocular imagery. These contours are related by
an unknown motion. Let us assume that between con-
secutive time instantst andt +1, the object undergoes
a rotation of angleα about the axisΩ = [ωx, ωy, ωz]T

passing through the origin, followed by a translation
[tx, ty, tz]T . We denote byT the matrix corresponding

to the translation and byR the matrix corresponding to
the rotation.

The motion estimation is done in two steps. In
the first step, described in Section 3.2, we use the
change in the surface normal at parabolic points to es-
timate the rotation parameters. We then construct an
initial estimate of the translation parameters by using
the scaled orthographic frontier points as an approx-
imation of the perspective ones. In the second step,
the estimate of motion parameters is refined using the
rest of the silhouette. Both the steps perform non-linear
least-squares minimization. The next two sections de-
scribe these two steps in detail. Experimental results
are presented in Section 3.4.

3.2. Obtaining an Initial Estimate
of the Motion Parameters

3.2.1. Rotational Parameters.The inflections of the
silhouette are projections of parabolic points on the ob-
ject surface (Vaillant and Faugeras, 1992; Koenderink,
1984; Blake and Cipolla, 1990). Parabolic points are
defined as the points where the Gaussian curvature is
zero. On generic surfaces these points lie on continuous
curves called parabolic curves. Under relative motion
between the object and the viewer, the inflections in
successive images will be projections of neighboring
points lying on the parabolic curve.
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Figure 8. Bottle data: (a)–(c) a sample triple of images of the trinocular imagery; (d)–(f) corresponding detected contours; (g) recovered 3D
contour; (h) recovered Gaussian curvature along the contour.

A parabolic point has a single asymptotic direction
(which is also one of the principal directions) and the
surface is locally cylindrical. Let us begin with the fol-
lowing lemma (Joshi et al., 1994, 1997) (Fig. 10).

Lemma 1. At a parabolic point, the infinitesimal
change in surface normal corresponding to any infi-

nitesimal displacement on the surface is perpendicular
to the asymptotic direction.

Proof: Let us parameterize the surface at a parabolic
point P by two parametersu andv, such that theu-axis
is along the asymptotic directionA at P and thev-axis
is along a direction perpendicular toA in the tangent
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Figure 9. Duck data: (a)–(c) a sample triple of images of the trinocular imagery; (d)–(f) corresponding detected contours; (g) recovered 3D
contour; (h) recovered Gaussian curvature along the contour.

plane. Theu- andv-axes span the tangent plane. The
second fundamental form in this basis is given by:

II =
[

0 0
0 k

]
. (11)

The change in the normal corresponding to
an infinitesimal displacement along the direction

D= [u, v]T in the tangent plane is given by:

dN = II D = [0, kv]T . (12)

Hence the change in the normal corresponding to
a small displacement in theD direction is along the
v-axis, thus orthogonal to the asymptotic direction (the
u-axis). 2
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Figure 10. The change in the surface normal at a parabolic point.

Alternately, the above Lemma can also be proved
as follows. As mentioned earlier, the change in sur-
face normal along any directionD in the tangent
plane is perpendicular to the direction conjugate toD.
Moreover, at a parabolic point, every direction in the
tangent plane is conjugate to the asymptotic direction
A. Thus the change in surface normal along any direc-
tion in the tangent plane is perpendicular to the asymp-
totic direction.

Consider a silhouette inflectionp which is the pro-
jection of a parabolic pointP onto the central image
I1(t). According to Lemma 1, as we trackp in the next
imageI1(t + 1) of the central camera, the correspond-
ing infinitesimal changedN in the surface normal will
be orthogonal to the asymptotic direction, sayA, at P.
Let p′ be the tracked inflection inI1(t+1), which is the
projection ofP′, a neighboring parabolic point on the
surface, and let the unit surface normal atP′ measured
from the viewpoint at timet + 1 beN′, it follows from
Lemma 1 that

A · dN = A · (R−1N′ − N) = A ·R−1N′ − A ·N = 0.

(13)

But the asymptotic directionA lies in the tangent
plane, implyingA · N = 0. Equation (13) reduces to:

A ·R−1N′ = 0. (14)

Note that the above equation is valid for an infinites-
imal motion. We parameterize the rotation using three
angles—the angleφ made byΩ with the Z-axis, the
angleψ between its projection inXY-plane and the
X-axis, and the rotation angleα. To recover the rota-
tion parameters, we need to track at least three inflec-
tions. Withn ≥ 3 inflections present in imagesI1(t)
and I1(t + 1), we use least-squares minimization with
the objective function given by:

n∑
i=1

[Ai · (R−1N′i )]
2. (15)

The minimization for Eq. (15) is done over the three
parametersφ,ψ andα. Note that we have to first find
correspondences between the sets of inflections on the
silhouettes in the two images. Since inflections are
discrete points on the silhouette, they are in general
few in number and all possible matches between the
two sets of inflections can be considered. Moreover,
if the motion is small, the ordering of the inflections
along the silhouette is maintained in general. This con-
dition further reduces the number of possible matches.
We select correspondences such that (1) the ordering
of the matched inflections along the silhouette is main-
tained, and (2) the angle between the normals at the
matched inflections is small.

We need to estimate the asymptotic directionA at
each inflection at timet . It is interesting that Eq. (14)
can be used to computeA at a given inflection using
trinocular imagery: we have matched inflections in the
three images at timet with known relative viewpoints
from the calibration. Thus we knowR for each pair of
images. We can computeA using Eq. (14) since we
knowN′ at each inflection.

3.2.2. Translational Parameters. Under scaled or-
thographic projection, rotation parameters alone de-
termine the direction of the epipolar plane normal.
Thus, with an estimate of the rotation parameters
the epipolar plane normal can be estimated and in
turn frontier points can be detected. Once the frontier
points have been detected and matched, the estima-
tion of the translational parameters becomes a lin-
ear problem (Joshi et al., 1994). The perspective case
is more complicated since the rotational parameters
alone do not determine the epipolar plane’s normal.
Thus, strictly speaking, the frontier points cannot be
detected unless the translation parameters are estimated
first.
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However, our goal here is only to obtain an initial
estimate of the motion parameters, and we use the or-
thographic frontier points as approximations to the real
ones. Our experiments have shown that the epipolar
plane’s normal estimated under the scaled orthographic
projection approximation is close to the correct per-
spective one.5 Given an initial estimate of the rotation
parameters, we estimate the epipolar plane normal with
the scaled orthographic projection approximation and
use it to detect the orthographic frontier points. Using
this approximation gives a good initial estimate of the
translational parameters, which is then refined in the
second step of our algorithm.

Recall that the matched frontier points are projec-
tions of the same 3D point. Therefore if a frontier point
f in imageI1(t) matches with the frontier pointf ′ in
imageI1(t + 1), then we have:

F′ = R F+ T. (16)

This implies that for a given rotation, estimating the
translation becomes a linear problem once the frontier
points have been detected and matched. This is taken
as the initial estimate of the translation parameters for
a given estimate of the rotation parameters.

Figure 11. Predicted and detected epipolar match.

3.3. Refining the Motion Estimate

In the second step, we use the structure along the entire
silhouette to refine the estimate of the motion parame-
ters obtained in the first step.

With an estimate ofR andT, we can determine the
location of the camera in the frameI1(t + 1) relative
to the local paraboloids in the frameI1(t). We can
also determine the epipolar plane for each point in the
imageI1(t). Once the structure parameters of the local
paraboloids and the epipolar plane are known, we can
estimate the curvature of the epipolar curve at each
point. Consider a pointpi on the silhouette in image
I1(t) (Fig. 11). We can predict the match pointpp′i in
frame I1(t + 1) as the projection of a pointpPi

′ which
satisfies the following two conditions:

1. pPi
′ lies on the estimated osculating circle of the

epipolar curve, and
2. the surface normal atpPi

′ is orthogonal to the view-
ing direction.

Note that we can also detect the epipolar match point
dp′i in imageI1(t + 1) as the intersection point of the
silhouette att + 1 and the estimated epipolar line cor-
responding topi .



Structure and Motion Estimation 45

In the refinement step, we iteratively minimize the
sum of the squared distance betweenpp′i and dp′i for
all silhouette pointspi . The minimization is over the
six-dimensional space ofR andT parameters. In our
algorithm, we iterate on the rotation parameters, and
at each iteration step we perform a non-linear least-
squares minimization to determine the best translation
parameters that give the minimum sum of distances
between predicted and observed silhouette points.

The algorithm for motion estimation can be written
as follows.

1. Obtain an initial estimate of the rotation parameters
(α0, φ0, ψ0) using tracked inflections as explained
in Section 3.2.1. Setα = α0, φ = φ0 andψ = ψ0.

2. For the given rotation parametersα, φ,ψ

(a) Detect and match the frontier pointsf and f ′

in the two central frames with the scaled or-
thographic projection approximation. Using the
matched frontier points, compute the initial es-
timate of translation parameters as explained in
Section 3.2.2.

(b) Knowing the local structure at each point on
the silhouette, refine the estimate of the trans-
lation parameters to minimize the sumSof the
squared distance between the predicted and the
detected epipolar match points for all the sil-
houette points. The sumS is given by:

S=
n∑

i=1

dist
(p

p′i ,
dp′i
)2
.

3. Minimize S by updating the values of the rotation
parametersφ,ψ andα, and repeating Step 2.

3.4. Implementation and Results

We can potentially consider the entire silhouette for
the computation of the sumS. But as observed in
Section 2.5.1 the structure estimation using epipolar
matches becomes less reliable as we approach the fron-
tier points, we exclude points close to the frontier points
from the computation.

Note that we have the reconstructed 3D occluding
contour at each time instant. Moreover, when we pre-
dict a match point, we know the predicted 3D contour
point as well. Hence, we could use the 3D distance
between the detected and predicted match points as
an error measure. But this may result in the propaga-
tion of errors in the structure estimation results to the

motion estimation results, as confirmed by our exper-
iments. Therefore, we have chosen the 2D distance as
our error measure.

For the first step of estimating rotation parame-
ters, we had to detect inflections of the silhouette.
Since the silhouette is locally flat near an inflection,
they are difficult to localize. Interestingly though, for
the same reason, the estimation of the direction of the
silhouette tangent is very robust. The first iterative step
of our algorithm, is entirely based on the direction of the
surface normal at the parabolic points. Under scaled
orthographic projection, the surface normal depends on
only the direction of the silhouette tangent at the tracked
inflections. However, under perspective projection, it
also depends on the position of the inflection along
the silhouette. For reliable detection of the inflections,
the image edges were smoothed using Gaussian filters
of increasing variance. For every smoothed curve, all
curvature zero-crossings are labeled as inflections, and
the stable ones are extracted by tracking them from the
coarsest to the finest scale. Since the inflections are
sparse, a greedy algorithm was sufficient for determin-
ing correspondence through the scale space.

We use least-squares minimization based on the
Levenberg-Marquart algorithm (IMSL Math/Library).
This minimization has proven to be very stable with
respect to the choice of initial value. The result of
this step is used as the starting value for the search of
the second iterative step of refining the estimate. We
used a minimization technique based on the downhill-
simplex algorithm (Press et al., 1994) for this iterative
step.

If R andT represent the relative motion from timet
to t + 1, RT and−RTT represent the relative motion
from t + 1 to t . We can use the structural parameters
estimated at timet+1 to predict the silhouette at timet ,
making use of all the structural information available.
In practice, this has improved the performance of the
motion estimation algorithm.

We have applied the motion estimation algorithm
to the image sequences mentioned in Section 2.5. In
these sequences, the rotation axis of the turntable is
not parallel to the image plane of the camera. Thus,
the three effective optical centers are not collinear, and
the effective motion of the object is a general one. It
should be noted that the “true” camera motion has been
computed for the three sequences through calibration
of the camera setup and turntable, and this has allowed
us to conduct quantitative tests of our motion estimation
method.
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Table 1. Result of the motion estimation for the squash.

Rotation axisΩ(ωx, ωy, ωz) Error inΩ Rotation angleα Error inα Translation (tx, ty, tz) in mm

True (0.008, 0.94, 0.33) — 5.0 — (125.6, 0.64,−5.03)

1 1st step (0.0339, 0.942, 0.335) 1.5 5.05 0.0493 (127,−2.94,−4.98)

Final (−0.0197, 0.944, 0.33) 1.61 5.17 0.172 (128, 4.69,−5.35)

2 1st step (0.0677, 0.953, 0.294) 4.0 5.59 0.586 (142,−8.4,−6.15)

Final (0.0312, 0.947, 0.32) 1.42 5.25 0.248 (132,−2.57,−5.41)

3 1st step (−0.0424, 0.942, 0.334) 2.92 5.003 0.003 (125, 7.7,−5.08)

Final (−0.11, 0.939, 0.324) 6.82 5.002 0.002 (125, 17,−5.49)

4 1st step (−0.0557, 0.948, 0.314) 3.79 5.04 0.0409 (127, 9.29,−3.23)

Final (0.00372, 0.944, 0.33) 0.268 4.87 0.132 (122, 1.19,−4.88)

5 1st step (0.163, 0.933, 0.322) 8.9 4.72 0.277 (117,−19.7,−3.95)

Final (0.0475, 0.942, 0.332) 2.25 4.98 0.0185 (125,−4.69,−4.77)

6 1st step (0.0469, 0.909, 0.415) 5.72 4.68 0.317 (113,−4.19,−3.4)

Final (−0.0301, 0.946, 0.324) 2.24 5.17 0.165 (130, 6.13,−5.15)

7 1st step (−0.0855, 0.956, 0.282) 6.07 5.35 0.35 (136, 14.4,−6.2)

Final (0.0105, 0.949, 0.315) 0.915 5.42 0.424 (137, 0.476,−5.87)

Figure 12. (a) and (b) Two views of the global structure of the squash after 30 frames; (c) structure recovered from calibrated motion.

3.4.1. Squash Sequence.The effective stereo angle
for this sequence was 10◦, with 5◦ rotation between suc-
cessive time instants. Table 1 lists the recovered motion
parameters after each step on a sample set of frames.
For each step, we also list the angle between the true
and estimated rotation axes and the error in the rotation
angle. All angles are in degrees. Although the motion
was constant throughout the sequence, this informa-
tion was not used in the algorithm. We have found

that the first step of minimization is stable with res-
pect to the initial guess. The result of this step is used
as the initial guess for the second step. Because the ro-
tation is modeled to be about an axis passing through
the origin, a small error in the rotation parameters re-
sults in a relatively large error in translational para-
meters.

Figure 12(a) shows the global structure recovered
after 30 frames. We have displayed the reconstructed
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Table 2. Result of the motion estimation for the bottle.

Rotation axisΩ(ωx, ωy, ωz) Error inΩ Rotation angleα Error inα Translation (tx, ty, tz) in mm

True (−0.042, 0.97, 0.25) — 5.0 — (130.1, 6.99,−5.17)

1 1st step (−0.07, 0.97, 0.22) 2.07 8.86 3.86 (232.6, 19.53,−13.14)

Final (0.0312, 0.947, 0.32) 1.42 5.25 0.25 (132.9,−1.36,−4.6)

2 1st step (−0.08, 0.93, 0.35) 6.59 6.24 1.24 (142,−8.4,−6.15)

Final (−0.12, 0.96, 0.24) 4.47 6.91 1.91 (179.5, 24.7,−8.9)

3 1st step (0.11, 0.97, 0.22) 8.9 5.94 0.94 (156.2,−17.0,−5.68)

Final (−0.07, 0.97, 0.25) 1.75 2.03 2.97 (50.33, 4.78,−3.25)

4 1st step (−0.49, 0.79, 0.37) 28.6 0.77 4.23 (12.19, 11.3,−2.31)

Final (−0.02, 0.97, 0.26) 1.57 5.76 0.76 (150.23, 3.92,−6.23)

5 1st step (0.03, 0.96, 0.28) 4.22 4.38 0.62 (112.65,−2.46,−4.42)

Final (−0.11, 0.97, 0.24) 3.82 6.94 1.94 (181.6, 22.97,−9.94)

6 1st step (−0.29, 0.93, 0.22) 14.34 7.08 2.08 (178.8, 59.10,−11.80)

Final (−0.04, 0.97, 0.24) 0.52 6.54 1.54 (172.9, 19.03,−9.23)

Figure 13. The global structure of the bottle after 25 frames.

3D occluding contours placed in a common coordinate
frame after de-rotating them using the estimated mo-
tion. A shaded version is shown in Fig. 12(b).

The contours in Fig. 12 seem to spiral a bit instead of
closing the structure. At first, this may appear to be a
result of accumulation of errors in the pair-wise motion
estimates. However, we compared the reconstruction
using the estimated motion to that obtained using the
true motion. We confirmed that the spiral nature of
the structure was a result of errors in calibration: for
comparison, Fig. 12(c) shows the reconstruction using
the true motion.

3.4.2. Bottle Sequence.The effective stereo angle for
this sequence was 10◦, with 5◦ rotation between succes-
sive time instants. Table 2 lists the recovered motion
parameters after each step on a sample set of frames for
the bottle. In our experiments, we noticed that the rota-
tion axis would show up close to the true rotation axis,
whereas the estimated rotation angle would be larger
than the true value of 5◦. This happened because the
object is symmetric and the rotation axis was almost
parallel to the axis of symmetry. We modified the first
step of the algorithm as follows. First, an initial esti-
mate of the motion using the inflection and frontier
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Table 3. Result of the motion estimation for the duck decoy.

Rotation axisΩ(ωx, ωy, ωz) Error inΩ Rotation angleα Error inα Translation (tx, ty, tz) in mm

True (0.012,−0.983,−0.18) — −3.0 — (90.04, 1.65,−2.82)

1 1st step (0.34,−0.93,−0.07) 19.7 −3.38 −0.38 (96.51, 35.26,−5.19)

Final (0.04,−0.98,−0.15) 2.21 −3.02 0.02 (91.15, 4.09,−3.27)

2 1st step (−0.27,−0.91,−0.28) 18.04 −5.97 −2.97 (167.8,−47.76,−7.7)

Final (0.02,−0.98,−0.17) 0.41 −2.993 −0.006 (89.91, 2.04,−2.75)

3 1st step (−0.05,− 0.99,−0.1) 5.93 −4.78 −1.78 (149.0,−8.6, 35.4)

Final (−0.002,−0.98,−0.15) 1.53 −3.33 0.33 (100.4, 0.24,−4.81)

4 1st step (−0.023,−0.99,−0.04) 7.87 −3.43 0.43 (102.2,−2.3,−8.9)

Final (0.039,−0.98,−0.193) 1.76 −2.92 −0.077 (87.35, 4.15,−2.08)

5 1st step (0.17,−0.78,−0.59) 27.94 −1.54 1.46 (32.79, 10.65,−45.0)

Final (0.01,−0.98,−0.18) 0.43 −3.07 0.07 (92.07, 1.19,−2.23)

Figure 14. The global structure of the duck after 36 frames.

points at a given timet was computed. The objec-
tive function S was computed using this motion esti-
mate. We then compared thisS to the one obtained us-
ing the final estimated motion at timet−1. We selected
the motion that yields a smaller value ofS between
these two, to initiate the search of the refinement step.
Figure 13 shows the global structure recovered over 25
frames.

3.4.3. Duck Decoy Sequence.The effective stereo
angle for this sequence was 6◦, with 3◦ rotation between
successive time instants. The modified algorithm was
applied to this sequence. Table 3 lists the recovered
motion parameters after each step on a sample set of
frames. Figure 14 shows the global structure recovered
from 36 frames.

The motion estimation results on the three sequences
presented here show that the rotation angle is typically
recovered within a degree for the squash and the duck
sequences, while within two degrees for the bottle se-
quence.

4. Conclusions

Although estimating structure and motion from sil-
houettes is more difficult than using viewpoint-
independent features, we have the advantage that more
information about the surface is available even from
a single silhouette: the surface normal, the sign of
the Gaussian curvature, and a constraint on the prin-
cipal curvatures at the surface point. We have used
the relationship between certain silhouette features
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(inflections) and a local model of the surface struc-
ture to estimate both the motion and the global surface
structure from perspective views of the silhouettes of
a moving object. To estimate the motion, we have also
used another set of points on the silhouette: the frontier
points.

The main motivation of this research was finding
out what we can do in theabsenceof the viewpoint-
independent or internal boundaries. The results ob-
tained on real images are encouraging and demonstrate
the validity of the method. Clearly, to get more robust
results, and for a more practical system, it should utilize
all the information available in the images.

We have demonstrated that structure and motion
from silhouettes can be used as a component of a
more complete system. In a more complete system,
additional detail e.g., concavities—which never show
up on the silhouette—could be recovered using other
“shape-from-X” methods. Moreover, to get more ro-
bust results, we can incorporate other features present
in the image to further constrain the structure as well
as the motion parameters. For example, if surface
markings or internal boundaries are present, applicable
techniques (Arbogast and Mohr, 1992; Faugeras and
Papadopoulo, 1992) can be used to recover the 3D
edges and to estimate the motion parameters. The re-
covered 3D edges can be incorporated in the global
structure using confidence measures; whereas the mo-
tion parameters can provide a starting point for our
second iterative step.
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Notes

1. Notation: boldface letters denote coordinate vectors or arrays.
We use uppercase letters to denote 3D points in the scene and
lowercase letters to denote their projections in the image, e.g.,p
is the projection of a 3D pointP, whose coordinate vector in the
camera’s frame isP.

2. Under orthographic projection, the silhouette normal (np) will be
parallel to the surface normal (NP), and the angleζ will be equal
to zero.

3. Since the matched points are not projections of the same 3D point,
perhaps a more appropriate term would be ‘related’ points. How-
ever the epipolar geometry based matching that we use is a natural
extension of the conventional stereo matching. Hence the use of
the terminology.

4. Two directionsU andV are said to be conjugate if the change in
the surface normal along directionU is orthogonal to directionV
and vice versa.

5. This approximation is not applicable under all circumstances. For
instance, if the object is close to the camera.
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