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Abstract: W e  address the problem of estimating the struc- 
ture and motion of a smooth curved object from its silhou- 
ettes observed over time by a trinocular imagery. W e  first 
construct a model for  the local structure along the silhou- 
ette for each frame in the temporal sequence. The local 
models are then integrated into a global surface descrip- 
tion by estimating the motion between successive frames. 
The algorithm tracks certain surface and image features 
(parabolic points and silhouette inflections, frontier points) 
which are w e d  to bootstrap the motion estimation process. 
The whole silhouette is then used to refine the initial mo- 
tion estimate. W e  have implemented the proposed approach 
and report preliminary results. 

1 Introduction 

Structure and motion estimation for objects with 
smooth surfaces and little texture is an important but diffi- 
cult problem. Silhouettes are the dominant image features 
of such objects. The viewing cone grazes the smooth sur- 
face along the (occluding) contour and intersects the image 
plane along the silhouette. At each contour point, the sur- 
face normal is perpendicular to the viewing direction. If 
the object is moving relative to the viewer, the silhouettes 
appearing in successive images will be projections of dif- 
ferent 3D contours on the surface. This is in contrast with 
an image sequence containing only viewpoint-independent 
features. 

Several methods have been proposed for structure es- 
timation from silhouettes under known camera motion 
[I ,  4, 12, 13, 141. These approaches have demonstrated 
that given a set of three or more nearby views of a smooth 
object, the structure of the object up to second order can 
be obtained along its silhouette. The recovery of struc- 
ture and motion from a monocular sequence of silhouettes 
has been investigated by Giblin et al. [3]. For the case of 
a curved object rotating about a fixed axis with constant 
angular velocity, they show: (1) given a complete set of or- 
thographic silhouettes, the rotation axis and velocity can 
be recovered, along with the visible surface; (2) given the 
silhouettes over a short time interval, the rotation axis can 
be recovered if the angular velocity is known. 
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In this paper, we address the problem of estimating the 
structure and motion of a smooth object undergoing arbi- 
trary unknown rigid motion from its silhouettes observed 
over time by a trinocular stereo rig. This technique will 
be useful when the viewer is a passive observer and has 
no knowledge or control of the object’s motion (see [lo] 
for a complementary approach, where a viewer plans its 
motion for building a global model of an object). Another 
application is model construction for object recognition[7]: 
due to self-occlusion, a simple motion, such as rotation on 
a turntable, may not reveal all the interesting parts of a 
complex object; it is desirable to move the object arbitrar- 
ily and still be able to construct the complete model. 

We use trinocular imagery for our analysis since three 
images can be used to recover the local structure up to 
second order. The world coordinate frame is taken to be 
that of the central camera of the trinocular imagery. We 
assume orthographic projection. At a given time t ,  the 
three images taken by the trinocular imagery are used to 
estimate the local structure of the object along the silhou- 
ette in the central image. If the motion of the object is 
small, the structure estimated a t  time t will also be valid 
at  time t + 1. We use the structure computed at  time t to 
estimate the motion between time frames t and t + 1. 

Strictly speaking, since the 3D contour changes with 
the object’s relative motion, it is impossible to define a 
unique point-to-point correspondence between successive 
silhouettes. Like others [l, 12, 131, we use the epipolar 
curves to establish correspondences and estimate the lo- 
cal structure. When the relative motion is unknown, we 
rely instead on other surface curves that project onto de- 
tectable and trackable silhouette features to obtain an ini- 
tial estimate of the unknown motion; we then iteratively 
refine the motion estimate using the rest of the silhouette. 

The silhouette inflections form such a set of features. 
They are projections of parabolic points on the surface 
[8, 131. We use the change in the surface normals at  the 
matched inflections to obtain an estimate of the rotation 
between two successive time frames. Given the epipolar 
plane geometry for a pair of images, we can consider an- 
other set of features called frontier points, where the sur- 
face normal is parallel to the epipolar plane normal [3]. 

In Sect. 2 the algorithm for structure estimation using 
trinocular imagery is described. The algorithm used for 
motion estimation from dynamic silhouettes is discussed in 
Sect. 3. To demonstrate the feasibility of our methods, we 
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include experimental results on a set of synthetic images. 
We conclude with comments in Sect. 4. 

2 Structure Estimation Using Trinoc- 
ular Imagery 

2.1 Modeling the Local Structure 

The local structure (up to second order) at  a surface 
point P is defined by the 3D location of P ,  the surface 
normal at P ,  the two principal directions in the tangent 
plane and the principal curvatures at P .  At each point 
P ,  we define a local coordinate frame (zi, yl, 21) with its 
origin at  P ,  the zi-axis along the outward surface normal, 
and the yl- and zl-axes along the two principal directions. 
The local surface up to  second order is a paraboloid [2], 
given by zl = ( ~ i y :  + nzz:)/2 (where ~1 and K Z  are the 
principal curvatures at  P )  or in matrix form given by: 

Q ~ ~ M ~ Q ~  = 0, (1) 

where Mi is a symmetric 4 x 4 matrix and QI is the vector 
of homogeneous coordinates of a point Q on the paraboloid 
at  P.' The signs of ~1 and K Z  define the point type: if KI 

and IE .Z  have the same sign (resp. opposite signs), P is an 
elliptic (resp. hyperbolic) point. If either ~1 or 6 2  is zero, 
P is a parabolic point and the silhouette has an inflection. 

The rigid transformation parameters between the local 
and the world coordinate frames (in our case the camera- 
centered frame), together with the principal curvatures 
~1 and ~ 2 ,  completely describe the local structure at  P. 
Let ( z ,y , z )  be the camera-centered frame, with the z- 
axis along the viewing direction and the zy-plane being 
the image plane. In general we need six parameters for 
the rigid transformation between (zi, yl, zl )  and (2, y, z )  
frames. But if P is a contour point, by definition the sur- 
face normal (the %[-axis) is orthogonal to the viewing di- 
rection (the z-axis). Hence we need only five parameters: 
two rot,ational and three translational. 

Consider again a point P on the contour (see Fig. 1). 
Let the angle between the 21- and z-axes be 0 and the angle 
between the zl- and z-axes be y. Let P be at  (20, yo, 20) in 
the camera-centered frame. The five-tuple (e ,  y, 20, yo, zo) 
defines the local frame with respect to the camera-centered 
frame. To completely describe the surface locally, we need 
to specify ~1 and K Z  in addition to the above five-tuple for 
each point on the silhouette. Equation 1 can be rewritten 
in (z,y,z) frame as: 

Q ~ M Q  = 0, (2) 

T 
where M = To-' 

Here R, is the 4 x 4 matrix in homogeneous coordinates 
for a rotation of angle y about the 21-axis, R, is the 4 x 4 

R, R, ML RZ1 R,' T:'. 

Notation: All boldface letters denote coordinate vectors or 
arrays. All capital letters denote 3D points in the scene and 
small letters denote their projections in the image. 

Figure 1: Projection geometry. 

matrix for a rotation of angle t9 about the zl-axis, TO is 
the 4 x 4 matrix for a translation by (zo,yo,zo), and Q 
is the homogeneous coordinate vector of Q in the camera- 
centered frame. 

Since P is a contour point, the surface normal at P 
is orthogonal to the viewing direction (z-axis), hence the 
z-component of the surface normal is zero: 

(3) 

This is a linear condition in (2, y, z ) ,  implying that the 
contour of the paraboloid is a planar curve. Eliminating 
z between (2) and (3) gives the equation of the silhouette, 
which is a parabola [6]. From this single projection in the 
central frame, we can obtain three constraints on the seven 
structure parameters (8, y, 20, yo, 20, ~ 1 ,  ~ 2 ) :  the normal to  
the silhouette at  the apex of the parabola is parallel to the 
surface normal, which gives angle 0 directly. The image 
location of the apex gives 20 and yo. The curvature at  
the apex gives a constraint on ~ 1 ,  ~2 and y. To complete 
the local structure model, we need to estimate depth zo 
and obtain two more constraints on ~ 1 ,  K Z ,  and y which 
are obtained using the matched points in the other two 
images of the trinocular imagery. 

2.2 Finding Correspondences 

Let 11, IZ and 13 be the three images taken by the three 
cameras of the trinocular imagery. Since the relative posi- 
tions of the cameras are known, we can define an epipolar 
plane for each point for each pair of images. Consider a 
silhouette point p l  in image 11. Similar to conventional 
stereo, we can find the correspondence p~ (resp. p 3 )  in 
image 12 (resp. 13) as the point lying on the epipolar 
line corresponding to p l .  The difference here is that the 
matched image points are not projections of the same 3D 
point. 

For the case of a continuous relative motion between a 
camera and an object, at each point on the silhouette the 
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Figure 2: Epipolar geometry. 

points matched using the instantaneous epipolar geometry 
trace a 3D curve (called epipolar curve) on the object such 
that at each point the curve is tangent to the view line [I, 
12, 131. In the trinocular imagery case, the points matched 
using the epipolar geometry will lie on the corresponding 
epipolar curve (see Fig. 2). At a point with the surface 
normal not parallel to the epipolar plane normal this curve 
is a regular curve e.g. a t  point PI in Fig. 2. But at points 
where the surface normal is parallel to the epipolar plane 
normal, the epipolar curve degenerates into a point e.g. at 
point P4 in Fig. 2. In fact, in such a case, the matched 
points are projections of the same 3D point. Such points 
are called the frontier poants for the corresponding camera 
motion [3]. 

As we approach a frontier point, the tangent to the sil- 
houette becomes parallel to the epipolar line, making the 
computation of the epipolar match difficult and inaccurate. 
Here we use the paraboloid model to find the correspon- 
dence. It can be shown that the projection of the local 
paraboloid is a parabola in each image with its normal at 
the apex depending only on the surface normal and the rel- 
ative rotational motion of the camera [6]. Given a frontier 
point in image 1 1  and the relative position and orientation 
of camera CZ (resp. C3) we can predict the normal to the 
corresponding parabola in image IZ (resp. 1 3 ) .  We find 
the matching parabola (in effect the matching point) in IZ 
(resp. 1 3 )  using the predicted normal. 

2.3 Computing Structure Parameters 

A t  Non-frontier points: Previous approaches for esti- 
mation of structure under known camera motion [I,  12, 131 
have used the epipolar parameterization of the surface: in 
[l] a differential formulation is presented to construct the 
structure along the silhouette; in [13] the radial plane is 
used to estimate one of the surface curvatures. 

Our reconstruction method is similar to the one used 
by Szeliski and Weiss [12], where the epipolar plane is cho- 
sen instead of the radial plane for the computation of one 
of the surface curvatures. In our setup, the three viewing 
directions are taken to be coplanar for simplicity, giving 
a common epipolar plane for the three cameras and mak- 
ing the epipolar curve planar. This is not an essential 
assumption. If the view lines are not coplanar, they can 

be projected onto the epipolar plane, but this involves an 
approximation. 

Since the epipolar curve is tangent to the three view 
lines, we can estimate its osculating circle by finding the 
circle that is tangent to  the three view lines. The point 
where this circle touches the central view line is an esti- 
mate of the 3D surface point. This gives depth zo of the 
3D point. The curvature of the fitted circle is an estimate 
of the curvature of the epipolar curve. This curvature en- 
ables us to compute the normal curvature of the surface 
along the view line, which in t,urn gives a constraint on 
the surface curvatures nl, n2 and angle y from the Euler 
formula [2]. 

Once the depth of the points along the silhouette is 
computed, we can estimate the direction of the tangent 
to the 3D contour. The contour tangent gives one more 
constraint on ~ 1 ,  I E ~  and y since it is along a direction con- 
jugate to the view line [9]. This constraint, along with the 
contraints given by the normal curvature and the curvature 
of the silhouette in the central image give us three equa- 
tions which are solved to obtain the values of the structural 
parameters, ~ 1 ,  n2 and y. See [6] for further details. 
A t  Frontier Points: We make use of the paraboloid 
model described in Sect. 2.1 to  estimate the structure a t  a 
frontier point. It can be shown [6] that the projection of 
the local paraboloid in images 1 2  and 1 3  is also a pargbola. 
For each of these parabolas: (1) The normal a t  the apex 
is given by the surface normal of the parabola in 11 and 
the relative rotational motion between the t,wo cameras. 
As discussed in Set:. 2.2, we use this fact in matching the 
parabolas (in effect points). (2) The curvature a t  the apex 
gives a constraint on the surface curva,tures. The three 
constraints obtained from the three matched parabolas are 
solved to compute KI, IEZ  and y. (3) The location of the 
apex gives a constraint on depth 20. This enables us to 
obtain two constraints for depth -to from the locations of 
the matches in the other two images. We solve these in- 
dividually and then take the average of the two computed 
values to get the final estimate of ZO. See [6] for further 
details. 

2.4 Experimental Results 

In this preliminary implementation, we have applied the 
method described in this section to  a set of synthetic im- 
ages generated using two fourth degree algebraic surfaces 
shown in Fig. 3 a-b. For a given viewing geometry, the 3D 
contour of the object was computed using the numerical 
method described in [ll]. The computed contour was then 
projected on a 512 x 512 image under orthographic projec- 
tion. The images, although synthetic, contained quantiza- 
tion noise. The edge points in the images were linked to 
give a closed curve and a local cubic model was fit a t  each 
point to estimate the tangent and curvature of the silhou- 
ette. The inflections were detected as the zero-crossings of 
the estimated curvature. 

Figure 3.c-d shows sample reconstructed contours along 
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Figure 3: Results of structure estimation: a-b. two objects, c-d. sample recovered and true 3D contours for the two 
objects, e-f. recovered and true Gaussian curvatures along the two contours 

with the true contours. The gaps in the reconstructed con- 
tours correspond to parabolic points where the surface nor- 
mal is nearly parallel to the epipolar normal. It is not pos- 
sible to get the depth estimate a t  these points (see [5] for 
a discussion on epipolar curves and where the reconstruc- 
tion based on epipolar parameterization fails). Fig. 3.e-f 
shows the estimated and true Gaussian curvatures along 
the silhouette. 

3 Motion Estimation 

Let's assume that between consecutive time frames, the 
object has undergone a rotation of an unknown angle a 
about an unknown axis Cl = [aI, w, , wZIT passing through 
the origin, followed by an unknown translation [ tz ,  t,, t Z l T .  
Let R and T be the 4 x 4 matrices corresponding to the 
unknown rotation and translation. 

We have 3D contours on the surface in the successive 
frames 11 ( t )  and 11 ( t  + 1) of the central camera estimated 
using the methods in Sect. 2. To estimate the relative mo- 
tion between successive frames, we use two sets of features 
of the silhouette: the sets of inflections and frontier points. 

The motion estimation is done in two steps. In the first 
step, we use the change in the surface normal a t  the in- 
flections to estimate the rotation parameters. For a given 
rotation, the epipolar plane normal can be estimated, and 
in turn the frontier points can be detected. These are used 
to estimate the translation parameters. In the second step, 
the estimate of the motion is refined using the entire sil- 
houette. Both the steps perform non-linear least-squares 
minimization over the rotation parameters. The next two 

sections describe these two steps in detail. The experimen- 
tal results are reported in Sect. 3.3. 

3.1 Obtaining Initial Motion Estimate 

Inflections are projections of parabolic points (points 
with zero Gaussian curvature) on the object surface. On 
generic surfaces these points lie on continuous curves - 
called parabolic curves. A parabolic point has a single 
asymptotic direction (which is also one of the principal 
directions) and the surface is locally cylindrical. 

We use the fact that a t  a parabolic point, if we move on 
the surface along any direction (hence in particular, along 
the direction tangent to the parabolic curve), the change 
in the surface normal is orthogonal to the asymptotic di- 
rection at  that point [6, 71. 

Consider an inflection p in the central image 11 ( t )  which 
is the projection of a parabolic point P.  If we track the 
inflection in image I l ( t  + l),  we will be moving along the 
parabolic curve at P .  From the above stated fact, the 
change in the normal should be orthogonal to  the asymp- 
totic direction A at P. We can compute A from the local 
structure a t  P estimated at  timet. Let p' be the tracked in- 
flection in I l ( t + l ) ,  and the projection of a surface point P' 
with the unit surface normal N ' .  Thus N' has to satisfy 
the constraint the de-rotated vector R-'N' is perpendic- 
ular to A.  Here R is a matrix representing the unknown 
rotation of the object between time t and t + 1. 

We parameterize the rotation using three parameters 
- angle 4 between the rotation axis and the z-axis, angle 
$J between its projection in zy-plane and the z-axis, and 
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Figure 4: Predicted and detected epipolar match. 

the rotation angle a. To recover the rotation parameters, 
we need to track at  least three inflections. With n 2 3 
inflections present in images I l ( t )  and I l ( t  + l), we use 
least-squares minimization with the objective function: 

n 

[Ai . (R-'N,')] ' .  (4) 
i= l  

The minimization is done over the three parameters 4, $ 
and a. We have to first find a match between the sets 
of inflections on the silhouettes in the two images. We 
match the inflections such that (1) their ordering along 
the silhouette is maintained, and (2) the angle between 
the normals at  the matched inflections is small. 

For a given rotation, we can estimate the translation us- 
ing the frontier points of the silhouette. The correspond- 
ing frontier points are projections of the same 3D point 
on the surface. Hence if a frontier point f in image I i ( t )  
matches with the frontier point f' in image I l ( t  + l), we 
have F' = T R F. Thus for a given rotation, estimating 
the translation becomes a linear problem once the matches 
for the frontier points are known. We match the frontier 
points such that their order along the silhouette is main- 
tained and the residual error in estimating the translation 
is minimum. 

3.2 Refining the Motion Estimate 

In the second step of motion estimation, we refine the 
initial estimate using the structure along the entire silhou- 
ette. With the complete estimate of R and T, we can 
determine the viewing direction of frame 11 (t + 1) relative 
to the local paraboloids in frame I l ( t ) ,  and hence in turn 
determine the epipolar plane for each point in image I1 ( t ) .  
Knowing the structure parameters of the local paraboloids 
we can estimate the curvature of the epipolar curve at  each 
point as well. 

Consider a point pi on the silhouette in image I l ( t )  (see 
Fig. 4 where we have shown the object-centered view for 
convenience). We can predict the match point "p: in frame 

I l ( t  + 1) as the projection of the point which (1) lies on 
the estimated osculating circle of the epipolar curve and (2) 
has the surface normal orthogonal to the viewing direction 
of I l ( t  + 1).  But we can also detect the epipolar match 
point dp: in image I l ( t  + 1) using the estimated epipolar 
geometry. In the refinement step, we iteratively minimize 
the sum of the squared distance between "pi and dpI for 
each silhouette point pi. Thus the algorithm for refining 
the estimate can be stated as follows. 

1. 

2. 

3. 

3.3 

For the given rotation parameters +,$J and a,  detect 
the frontier points f and f' in the two frames. Find 
the match for the set of frontier points. Using this 
match, compute the translation T. 
Using the estimate of R and T and the local structure 
at  each point pi on the silhouette, predict the epipolar 
match point at  t + 1. Also detect the epipolar 
match point dpI in image I l ( t  + 1). Compute the 
sum, say s, of the squared distance between "pi  and 
dp;  for all the silhouette points p i .  
Repeat steps 1 and 2 to minimize s, updating the 
values of angles 4,+ and Q at each step. 

Experimental Results 

We have tried a variety of motions to test our algorithm. 
It was found that the first step of minimization was stable 
with respect to the initial guess. The result of this step is 
used as the initial guess for the second step. We noticed 
that the estimate of the rotation axis after the first step 
is within 15 degrees of the correct axis. Therefore we re- 
peat the second minimization step with the initial guess 
for the rotation axis sampled evenly from a cone of 15 de- 
grees around the result of the first step. The result giving 
minimum residual error was taken to be the final result. 

Table 1 lists the recovered motion parameters after each 
step on a sample set of motions. For each step, we also list 
the angle between the true and estimated rotation axes 
and the error in the rotation angle. The estimate of angle 
cy was within one degree of the correct value. Since the 
rotation is modeled to be about an axis passing through the 
origin, a small error in the rotation parameters results into 
a relatively large error in translational parameters. Figure 
5.a-c shows the recovered 3D contours de-rotated after the 
motion estimate, and overlaid on the true 3D contours for 
the set of motions given in Table 1. The recovered contours 
fit closely to the true ones. 

We also applied the algorithm of motion estimation over 
a sequence of five frames. Fig. 5.d shows all the detected 
contours (along with the recovered local paraboloids) in 
the object-center frame de-rotated using the estimated mo- 
tion. The small errors in the interframe motion estimation 
have not caused accumulation of errors over frames. 

4 Conclusions 

Although estimating motion from silhouettes is more 
difficult than using viewpoint-independent features, we 

170 



a. b. C 

1 

2 

3 

d. 

Rotation Axis Error in Rotation Error in Translation 
W J f Z  7 U,, wz) Q Angle a cy (t,,t,,t,) in pixels 

True (0.58, 0.58, 0.58) - -10.00 - (190.38, -210.64, 20.26) 
1st step (0.61, 0.69, 0.39) 12.68 -13.05 3.05 (288.40, -289.03, 56.04) 
2nd step (0.68, 0.53, 0.51) 7.53 -10.99 0.99 (178.76, -270.66, 35.67) 

True (0.58, 0.58, 0.58) - 10.00 - (-210.64,190.38,20.266) 
1st step (0.31,0.72,0.62) 17.67 8.78 1.22 (-231.40,89.75,13.82) 
2nd step (0.60,0.58,0.54) 2.46 10.55 0.55 (-228.27,215.81,18.83) 

True (-0.00, 0.71, 0.71) - 10.00 - (-245.57, -15.19, 15.19) 
1st step (-0.02, 0.74, 0.67) 3.06 11.18 1.18 (-270.30, -24.73, 5.49) 
2nd step (0.06, 0.73, 0.68) 3.99 10.83 0.83 (-266.48, 5.53, 2.42) 

Figure 5: Results of motion estimation: a-c. de-rotated contours overlaid on the true contours, d. global structure 
estimation using a sequence of five frames. 

have the advantage that even from a single silhouette we 
can obtain more information about the surface: the sur- 
face normal, the sign of the Gaussian curvature and a con- 
straint on the principal curvatures at each contour point. 
Our method uses the dynamic silhouettes to estimate both 
the motion and the global surface of a smooth object. 

The initial experimental results are encouraging and 
provide a demonstration of the Galidity of the method. 
More rigorous experiments should be conducted on syn- 
thetic images with controlled noise and on real im- 
ages.Since three frames are sufficient to distinguish be- 
tween viewpoint-dependent and viewpoint-independent 
edges[l3], using the trinocular imagery we can detect 
viewpoint-independent edges present, if any, and utilize 
them in motion estimation as well. We also plan to inves- 
tigate the case of perspective projection. 
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