
From Ramp Discontinuities to Segmentation Tree

Emre Akbas and Narendra Ahuja

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Abstract. This paper presents a new algorithm for low-level multiscale segmen-
tation of images. The algorithm is designed to detect image regions regardless of
their shapes, sizes, and levels of interior homogeneity, by doing a multiscale anal-
ysis without assuming any prior models of region geometry. As in previous work,
a region is modeled as a homogeneous set of connected pixels surrounded by
ramp discontinuities. A new transform, called the ramp transform, is described,
which is used to detect ramp discontinuities and seeds for all regions in an im-
age. Region seeds are grown towards the ramp discontinuity areas by utilizing
a relaxation labeling procedure. Segmentation is achieved by analyzing the out-
put of this procedure at multiple photometric scales. Finally, all detected regions
are organized into a tree data structure based on their recursive containment rela-
tions. Experiments on real and synthetic images verify the desired properties of
the proposed algorithm.

1 Introduction

Low-level image segmentation partitions a given image into regions which are charac-
terized by some low-level properties of their constituent pixels, where the term “low-
level” refers to local and intrinsic properties of pixels such as gray-level intensity (or
color), contrast, gradient, etc. For a set of connected pixels to form a region, they should
have a certain degree of interior homogeneity and a discontinuity with their surround-
ings, where the magnitude of discontinuity is large compared to the interior variation.

Our goal is to detect image regions regardless of their shapes, sizes and levels of in-
terior homogeneity. These goals preclude the use of any prior model about region shape
or geometry, and the fact that a region can have any level of homogeneity requires us to
do multiscale analysis. Furthermore, we want the algorithm to work without requiring
any image-dependent parameter tuning. Achieving these goals are challenging because
of the nature of discontinuities that separate regions. A sharp edge in 3D world might
be mapped to a wide ramp discontinuity in the image due to defocussing and penum-
bral blur in the image acquisition process. Hence, region boundaries in images, which
can have arbitrary shapes, are surrounded by ramp discontinuities of various widths and
heights.

In the context of our study, we can classify the previous work as either not being
multiscale, or imposing models on the geometry of edges. The earliest approaches to
segmentation such as thresholding [8], region-growing [8] and watersheds [11] ignore
the multiscale aspect of the problem. Energy minimization based approaches such as
Markov Random Field modeling [7] and active contours [14] enforce constraints on the

local shape of regions; therefore, they are not capable of detecting arbitrarily shaped
regions. Graph theoretical methods such as Normalized Cuts [13] and graph cuts [15]
requires the number of regions to be given as input, which does not guarantee the detec-
tion of regions at all scales. Clustering methods attempt to find regions as clusters in the
joint space of pixel positions and some features, (e.g. intensity, texture, etc.) extracted
from pixels. For this, they either need the number of regions or some density estimation
parameters [3,4], as input. As discussed in [2], mean-shift based segmentation cannot
detect steep corners due to averaging and tends to create multiple boundaries, hence
many small regions, for the blurred edges in the image.

In recent years, many segmentation algorithms have been developed by aiming to
maximize performance on the Berkeley Segmentation Benchmark Dataset [9] which
contains images segmented by humans. We note that these are object-level segmenta-
tions and many regions in the images are not marked (i.e. many edges are not marked
even if there is strong visual evidence for an edge, or some edges are marked where
there is too little or no visual evidence). It is not our goal, in this study, to segment ob-
jects out, instead we aim to detect low-level image structures, i.e. regions, as accurately
and completely as possible so as to provide a reliable and usable input to higher level
vision algorithms.

To this end, we follow the line of research in [1] and [2], and develop a new algo-
rithm to achieve the aforementioned goals. As in [1], we use gray-level intensity and
contrast as the low-level properties to define and detect low-level image structures. We
define an image region as a set of connected pixels surrounded by ramp discontinuities,
as done in [2]. We model ramp discontinuities with strictly increasing (or decreasing)
intensity profiles. Each ramp discontinuity has a magnitude, or contrast, which allows
us to associate a photometric scale with each boundary fragment surrounding regions.
We achieve a multiscale segmentation over a range of scales, by progressively removing
boundary fragments whose photometric scales are less than the current scale of analy-
sis. Finally, all regions detected at all photometric scales are organized into a tree data
structure according to their recursive containment relations.

In this paper, we propose a new method, called the ramp transform, for detection of
ramps and estimation of ramp parameters. At a given pixel, we analyze multiple inten-
sity profiles passing through the pixel in different directions, and estimate the magnitude
of the ramp discontinuity at that pixel by minimizing a weighted error measure. After
applying the ramp transform, seeds for all image regions are detected and these seeds
grow to become complete regions.

Our contributions are: (1) A new segmentation algorithm which detects image re-
gions of all shapes, sizes and levels of intensity homogeneity. It arranges regions into
a tree data structure which can be used in high level vision problems. The algorithm
gives better results and is less sensitive to image-dependent parameter tuning, com-
pared to the existing popular segmentation algorithms. (2) A new transform, called the
ramp transform, which takes an image and outputs another image where the value at
each pixel gives a measure of ramp discontinuity magnitude at that pixel in the original
image, is proposed. (3) A new ground-truth dataset for low-level image segmentation.
To the best of our knowledge, this is the first dataset of its kind for such purpose. This
dataset could also be used as a benchmark for edge detection algorithms.

The rest of the paper is organized as follows. Section 2 describes the ramp and
region models, the ramp transform and the segmentation algorithm. In Section 3, we
present and discuss experimental results, and the paper is concluded in Section 4.

2 The models and the algorithm

A set of connected pixels, R, is said to form a region if it is surrounded by ramp dis-
continuities, and the magnitudes of these discontinuities are larger than both the local
intensity variation and the magnitudes of discontinuities, within R. To elaborate this
definition, we first describe the ramp discontinuity model and the ramp transform.

(a) (b)

Fig. 1. (a) Ramp model. (b) Ramp trans-
form of f(x). Ci is equal to |f(i + a) −
f(i−a)|where a = min{|i−e1|, |i−e2|}.

Ramp model. Consider the 1-dimensional
image f given in Fig.1(a). A ramp is charac-
terized by its strictly increasing (or decreas-
ing) profile. So, the part of the curve between
e1 and e2 is a ramp. The width of the ramp is
|e1−e2|, and its magnitude is |f(e2)−f(e1)|.
Additionally, we define two measures, “ramp
quality” and “point-magnitude”, which will
help us to generalize the ramp model to 2D
functions.

We define the “ramp quality” as the ra-
tio between its magnitude and width, namely:
|f(e2)−f(e1)|
|e1−e2| . The “point-magnitude” at loca-

tion i is defined as:

Ci = |f(i+ a)− f(i− a)| (1)

where a = min{|i− e1|, |i− e2|}. Note that the ramp magnitude and point-magnitude
are different measurements. Both are equal only when the point i is located at equal
distances to the endpoints, e1 and e2, and f(x− i) is an odd function.

In 2D images, computing the point-magnitude of the ramp discontinuity at iii, i.e.
C(iii), is not a trivial task as it is in the 1D case. This is because an infinite number of
lines, hence ramp intensity profiles, pass through the pixel iii. We assume that a pixel iii
is within a ramp discontinuity if it has at least one strictly increasing (or decreasing)
intensity profile passing through it.

2.1 Ramp transform

The transform converts the input image I to a scalar height field C. The height at lo-
cation iii in C corresponds to the point-magnitude of the ramp discontinuity at iii in the
original image I .

If I is a 1D image, computing the ramp transform amounts to computing Ci for all i
by setting f = I in eq.(1). The ramp transform of the ramp of Fig.1(a) is given in Fig.4.

If I is a 2D image, an infinite number of lines passes through iii, and each of these
lines has its own intensity profile. To parametrize these lines –and their corresponding

intensity profiles– let us define an angle θ which is the angle that the line makes with a
horizontal row of the image. For a finite set of angles in [0, 2π), we analyze the intensity
profiles and measure the corresponding ramp parameters. For the ramp discontinuity at
angle θ, let qθiii be its ramp quality and cθiii its point-magnitude at iii.

It is tempting to set Ciii = max
θ

cθiii but it gives us noisy estimates since ramp end

points are affected by the noise present in images. To be robust to this noise, we estimate
Ciii in a weighted least-squares setting using the ramp quality measures as weights:

Ĉiii = min
∑
θ q

θ
iii (Ciii − cθiii)2 =⇒ Ĉiii =

P
θ q

θ
iii c
θ
iiiP

θ q
θ
iii

(2)

In the following, we drop the hat of Ĉiii, and use Ciii.

2.2 Obtaining seeds for regions

The output, C, of the ramp transform contains point-magnitudes of the ramp disconti-
nuities found in I . In this section, we first describe our region model and then elaborate
on how seeds for all image regions are detected from C.
Region model. A set of connected pixels, R, is said to form a region if: 1) it is sur-
rounded by ramp discontinuities, 2) the magnitudes of these discontinuities are larger
than both the local intensity variation and the magnitudes of discontinuities, within R.

To obtain regions that conform with the above definition, we look for the basins
of the height field C. To find all basins, all photometric scales, i.e. contrast levels, are
traversed from lower to higher and new basins are marked as they occur. Then, the set
of basin pixels, S, contains the seeds for image regions. The remaining set of pixels, D,
correspond to the ramp discontinuity areas, and we call these pixels as ramp pixels.

We find the connected-components in the set S, and label each component, which
corresponds to a distinct basin of C, with a unique label. If there are N connected-
components, then each pixel in the set S takes a label from the setL = {1, 2, 3, . . . , N}.

2.3 Region growing by relaxation labeling

Having obtained the regions seeds (S), we want to grow them by propagating labels
towards the ramp discontinuity areas (D) which are unlabeled. For this purpose, we use
a relaxation labeling [12] procedure. Although the classical watershed transform might
be utilized here, we choose not to use it because it does not give good edge-location
accuracy at corners and junctions.

Let iii← ` denote the event of assigning label ` to pixel iii, and P (t)(iii← `) denote
the probability of this event happening at iteration t. Relaxation labeling iteratively up-
dates these probabilities so that the labeling of pixels get more consistent as the method
iterates. Next, we describe how we compute the initial probability values.
Computing Priors. For a pixel that is part of any detected region seed, we define the
prior probabilities as P (0)(iii← `) = 1 if iii ∈ R` (0, else) ∀iii ∈ S,∀` ∈ L.

On the other hand, the prior probabilities of the pixels which are within the ramp
discontinuities, i.e. those iii ∈ D, are not trivial. To compute these priors, we design a
cost function for assigning label ` to pixel iii, i.e. the event iii← `, as follows.

Fig. 2. Computing the initial probabil-
ities for relaxation labeling.

Consider the scenario given in Fig.2. Pixel iii
is within the ramp discontinuity area among re-
gions R1, R2, and R3. The point jjj1 is the clos-
est point to iii, in region R1 (similarly jjj2 for R2

and jjj3 for R3). Let ij1 denote the line segment
connecting iii and jjj1. We compute the cost of as-
signing label 1 to ramp pixel iii by analyzing the
intensity profile along the line segment ij1. The
cost function is designed in such a way that the
flatter the profile is, the lesser the cost, and vice
versa. We achieve this by summing up finite dif-
ferences of the intensity profile at regular inter-

vals. Formally, the cost of assigning label ` to a ramp pixel iii is given by:

G(iii← `) =
‖iii−jjj‖/h∑
n=1

|Iiii+nhuuu − Iiii+(n−1)huuu| (3)

where jjj is the closest pixel to iii such that jjj ∈ R`, h is a small stepsize, ‖iii − jjj‖ is the
distance between iii and jjj, and uuu = jjj−iii

‖iii−jjj‖ , a unit vector.
To compute prior probabilities for a ramp pixel iii, we use:

P (0)(iii← `) = G−1(iii←`)P
k∈LG

−1(iii←k) , for ∀iii ∈ D,∀` ∈ L. (4)

Relaxation labeling. Once the probabilities are initialized by P (0)(·),we iteratively
update them by the following relaxation labeling update rule:

P (t+1)(iii← `) = P (t)(iii←`)(1+Q(t)(iii←`))P
k∈L P

(t)(iii←k)(1+Q(t)(iii←k)) (5)

where Q(·) is defined as:

Q(t)(iii← `) = 1
|Niii|

∑
jjj∈Niii

∑
k∈LRiiijjj(`, k)P

(t)(jjj ← k). (6)

Here Niii denotes the neighbors of pixel iii and Riiijjj(`, k), called the compatibility
function, gives a measure of how compatible the assignments “iii ← `” and “jjj ← k”
are. The constraint on R(·) is that it should return values in the interval [−1,+1]: 1
meaning that the two events are highly compatible, −1 meaning just the opposite. We
choose the following form:

Riiijjj(`, k) =

e−
|Iiii−Ijjj |

s , ` = k

e−
M−|Iiii−Ijjj |

s , ` 6= k
(7)

where M is the maximum value that |Iiii − Ijjj | can take for any I , iii, jjj. It is 255 for
standard 8-bit images. This compatibility function forces the neighboring pixels with
similar intensities to have the same labels.
Final labeling of ramp pixels. When the highest change in any P (t)(·) becomes very
small, we stop the iterations and label the ramp pixels with the labels having the maxi-
mum probabilities: iii← arg max

`
P (t)(i← `).

2.4 Multiscale segmentation

After relaxation labeling, every pixel in the image has a label, hence every pixel has
joined one of the seeds detected after the ramp transformation step. Now we analyze
these regions at a finite set of photometric scales, i.e. contrast levels, and produce mul-
tiscale segmentation of the image.

Segmentation of I at a given contrast level σ is defined as the partitioning of I into
regions where all boundary fragments have a photometric scale larger than or equal to
σ. A boundary fragment is defined to be a connected set of boundary pixels separating
two neighboring regions. For a given contrast level σ, a fragment f is said to have lower
photometric scale than σ, if it satisfies: 1

|f |
∑
ppp∈f I{C(ppp)<σ} < α where |f | denotes the

length of the fragment and α is a small constant (in all our experiments we set it to 5%).
This criteria allows boundary fragments to have some amount of weak edge pixels, i.e.
those having contrast less than σ.

Regions at all photometric scales are obtained by starting from the lowest level
photometric scale and removing boundary fragments having contrasts less than σ, pro-
gressively as σ increases. This process, which is an agglomerative clustering of regions
according to the inequality above, ensures that remaining regions always conform with
the region model and successive merges create a strict hierarchy.

(a) (b) (c) (d) (e)

(f) (g)

1∪2

21

9875

6

3

4
(h)

Fig. 3. Illustration of steps in the algorithm. (a) Input image I . (b) Output of ramp transform,
C, applied to I . Here, the darker the pixel, the higher the contrast of the underlying ramp. (c)
Basins of C. Each basin is represented with a different color. These basins correspond to region
seeds and the remaining pixels are ramp pixels (white color). (d) Final labeling obtained by
growing the region seeds towards the ramp pixels using relaxation labeling. (e,f,g) Results of
multiscale segmentation. (e) Segmentation result for photometric scale σ = 5. All regions are
included. (f) Segmentation for σ = 65. Two regions (head and the body) merged. This means
that the photometric scale of the boundary fragment in between the two merging regions is less
than 65. (g) Segmentation for σ = 80. More regions have disappeared. The remaining regions
are of photometric scale larger than σ = 80, ensured by the region model and the algorithm.
(h) Segmentation tree. On the left, each region is labeled by a number. Using the containment
relations of regions, our algorithm computes the tree given on the right hand side.

2.5 Constructing the segmentation tree

Due to the nature of multiscale segmentation process described above, regions merge
as the scale of analysis, σ, is increased. This allows us to arrange the regions into a tree
data structure. Suppose that regions R1 and R2 at photometric scale σn have merged
and become R3 at scale σn+1. Then, in the segmentation tree R1 and R2 should be the
children ofR3. Applying this rule recursively for all regions, we obtain a tree of regions,
called the segmentation tree, where the root node corresponds to the entire image itself.
We illustrate all steps of the algorithm on a simple synthetic image, in Fig.3.

3 Experiments and results

(a) (b)

Fig. 4. Illustration of the ramp transform. (a) Top: A synthetic image containing a sharp step
edge, on the left, and a wide ramp edge on the right, which was obtained by blurring a step edge
by a Gaussian kernel of σ = 4. The contrasts of both edges are 100. Middle: Ramp transform of
the synthetic image. For both edges the peak value of the response of the transform is 100, which
is the contrast of the edges. Bottom: Gradient magnitude, obtained by horizontal and vertical
[−1 +1] filters. The responses for two edges are not the same. (b) Ramp transform of a real image.
Left: An image containing ramp discontinuities of varying widths. Middle: Ramp transform of
the image. Right: Gradient magnitude of the image.

We first demonstrate the ramp transform. To show that it can correctly measure
the contrast of the underlying ramp edge, we created a synthetic image containing two
edges of the same intensity contrast (Fig.4(a)). One of the edges is a step-edge, and
the other is a ramp edge. Although they have different widths, we expect that the ramp
transform gives similar values for these two edges. Fig.4(a) illustrates this property.

Fig.4(b) illustrates the ramp transform on a real image (taken from [5] with per-
mission). This image contains ramp edges of various widths. A fixed-length gradient
filter is incapable of measuring the ramp magnitudes correctly (see Fig.4(b), bottom).
The ramp transform successfully estimates the pointwise ramp magnitudes as expected.
Next, we describe how we quantitatively compared our segmentation algorithm with
available algorithms.

3.1 Quantitative comparison with other algorithms

Creating a ground truth dataset for low-level image segmentation is a challenging task
because 1) Segmenting images by hand is a laborious process. 2) Humans use their

high-level semantic knowledge while segmenting images, and it is difficult to eliminate
this bias. This is why we do not use the Berkeley segmentation dataset [9], where human
subjects were asked to segment out objects (see paragraph 4 in Section 1). Our goal in
this study is not object-level segmentation, instead we want to detect all regions as
accurately and completely as possible.
The dataset. We address the challenges stated above by having human subjects seg-
ment small image patches instead of whole images. This makes segmentation-by-hand
a much easier process and removes the high-level knowledge bias to a large extent be-
cause a small image patch is unlikely to contain objects. We also randomly rotate the
image patch (at multiples of 90 degrees) to further reduce this bias. We developed a
GUI which, given an image, displays a random patch and allows the user to segment it
by drawing polygonal lines.

(a) (b) (c)

Fig. 5. (a) An image from the dataset. (b) The patch represented by the upper yellow square
on (a) and its ground-truth segmentation. Note that the patch is rotated 90 degrees clockwise. (c)
The other patch and its ground-truth segmentation.

We created such a dataset using a set of 15 images. We fixed the size of the patches
at 50 × 50 pixels and randomly extracted 50 patches per image, thus obtaining 750
patches in total. Image sizes range approximately from 250× 250 to 500× 500 pixels.
We used 5 human subjects to hand-segment these patches. Each patch was segmented
by a single human subject. Since patch extraction was random, patches might overlap.

Fig.5 shows an image from our dataset and two example patches randomly extracted
from it. Human segmentations for these patches are also given.
Performance measure. We evaluate the performance of a segmentation algorithm by
looking at its segmentation accuracy over the patches where ground-truth segmentations
are provided by human subjects. The segmentation accuracy for a single patch is mea-
sured by precision-recall values obtained by comparing the ground-truth and machine’s
output. We describe this process with an example. Consider the image in Fig. 6(a) and
its patch in Fig. 6(b) with its ground-truth in Fig. 6(c) (call this as G). Suppose that our
segmentation algorithm produced the result given in Fig. 6(d), thus the segmentation
corresponding to the patch is Fig. 6(f) (let this be R). Now, we compare G and R and
find correspondences between the boundary pixels in R and G. Each boundary pixel in
G either matches with a single boundary pixel in R, or does not match with anything
at all. To find the optimal matching between G and R, we use the method described
in Appendix B of [10], which casts the problem as a minimum cost bipartite assign-
ment problem. The result of matching is given in Fig. 6(g) where red pixels denote the

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 6. Illustration of the performance measure. (a) An image from our dataset. A patch is
marked by the red square. (b) Magnified version of the patch. (c) Provided human segmentation
for the patch. (d) Segmentation of (a) obtained by our algorithm. (e) Segmentation of (a) obtained
by the mean-shift based algorithm. (f) Our result at the location of the patch (red square in (d)).
(g) Matching result between the ground-truth (c) and our result (f). Red-pixels represent the
ground-truth, blue pixel represent algorithm’s output (our result, in this case). White lines denote
matching pixels. (h) Mean-shift based method’s result at the location of the patch (red square in
(e)). (i) Matching result between (c) and (h). See (g) for explanation.

boundary pixels of G, and blue pixels denote the boundary pixels of R. The white line
between a red pixel and a blue pixel indicates a match.

As done in [10], we measure the goodness of the match by precision-recall. If the
image patch is considered as a query,G as its relevant (ground-truth) result, andR as the
retrieved result (by the algorithm), we could compute precision-recall as: Recall r =
|relevant ∩ retrieved|

|relevant| , and Precision p = |relevant ∩ retrieved|
|retrieved| . We combine precision and

recall using the F-measure defined as: f = 2pr
p+r . For the matching result of Fig. 6(g),

precision-recall and F-measure values are p = 0.61, r = 0.66, f = 0.63, whereas for
Fig. 6(i) they are p = 0.31, r = 0.95, f = 0.47. Note that for the latter case, the recall
is very high since only a few red pixels are unmatched, but the precision is low because
there are plenty of blue pixels that are unmatched.
Comparison. We compared our algorithm with two available algorithms which are
widely used in the literature: Felzenszwalb’s graph-based algorithm [6] and the mean-
shift algorithm [3]. We did not include N-Cuts [13] because it needs the number of
regions as input, which is an explicit image-dependent parameter, and unknown apriori.

Both algorithms requires 3 input parameters from the user and we do not know
which values to use. So, we sample a large number of input parameters for both algo-
rithms. Mean-shift based segmentation method [3] requires a spatial bandwidth σs, a
range bandwidth σr, and a minimum region area a. We selected the following input pa-
rameter space: {σs, σr, a} ∈ {5, 7, 9, 11, 15, 20, 25}×{3, 6, 9, 12, 15, 18, 21, 24, 27}×
{5, 10}. The graph-based algorithm [6] expects a smoothing scale σ, a threshold k
which is the scale of observation (equation (5) in [6]), and a minimum region size

a, as input. We used the following parameter space: {σ, k, a} ∈ {0.5, 1, 1.5, 2} ×
{250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500}×{5, 10}. Our algorithm out-
puts a hierarchy of regions. However, in order to compute its segmentation accuracy
and compare it with other algorithms, we need single-layer segmentation results. For
this purpose we used the photometric segmentation outputs at scales
σ = {10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38}.

First, we report best average F-measure results per image (BAFPI). To get this for
an image, we compute F-measures for all patches of that image and we average these
results for each element in the input parameter space. Formally, BAFPI for image I
and algorithm A is BAFPI(I,A) = max

ppp∈S
1
50

∑50
i=1 F (Ii, A(I,ppp)i) where S is the input

parameter space ofA, Ii is the ground-truth for the ith patch of I ,A(I,ppp) is the segmen-
tation result of A applied on I with parameters ppp, A(I,ppp)i is the ith patch of the seg-
mentation result, and F (ptch1, ptch2) gives the F-measure between the ground-truth
ptch1 and machine output ptch2. BAFPI results are given in Table 1. Our algorithm
outperforms the other two algorithms on all except three images.

Table 1. Best average F-measure per image (BAFPI) results.

Images→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg.

Graph-based 0.47 0.68 0.55 0.55 0.56 0.67 0.66 0.51 0.72 0.54 0.51 0.67 0.63 0.67 0.68 0.60
Mean-shift 0.62 0.80 0.60 0.58 0.70 0.78 0.79 0.63 0.72 0.67 0.65 0.69 0.77 0.76 0.72 0.70

Our method 0.74 0.86 0.69 0.67 0.75 0.81 0.82 0.68 0.79 0.65 0.68 0.65 0.81 0.80 0.71 0.74

The results in Table 1 are useful to show us the best these algorithms could do
per image. On the other hand, these results are unrealistic because for each image, it
assumes that we know the best input parameters to use, which is not true in practice.
Therefore, we next look at what happens if we use the same input parameters for all
images. We report the best average F-measures (BAF) per algorithm (along with the
corresponding precision and recall values) in Table 2. BAF is defined as BAF(A) =
max
ppp∈S

1
15x50

∑15
j=1

∑50
i=1 F (Iji , A(Ij , ppp)i) where Ij denotes the jth image in the dataset.

Results in Table 2 show that our algorithm outperforms the others even when the
input parameter is fixed and the same for all images. In fact, the discrepancy between
the performances of our method and the mean-shift’s is larger in BAF results (0.70
to 0.62) than the BAFPI results (0.74 to 0.70), which suggests that mean-shift’s input
parameters are more image-dependent.

Table 2. Best average F-measure (BAF) results.

Precision Recall F-measure (BAF)
Graph-based 0.56 0.81 0.57
Mean-shift 0.61 0.87 0.62
Our method 0.67 0.87 0.70

Finally, we give some of the segmentation results (in Fig.7) obtained by the best
parameters found by the BAF measure. (The parameters are: graph-based algorithm:
σ = 0.5, k = 1000, a = 10, mean-shift: σs = 5, σr = 6, a = 10, our method σ = 18).

Fig. 7. Segmentation results. First column: input image, second column: output of graph-based
method, third column: output of mean-shift based method, fourth column: our method. See text
for details on input parameters.

In the supplementary material of the paper, we provide a graphical user interface to
browse the segmentation trees of images. Finally, we want to note that our algorithm
is not designed for texture segmentation. If run on texture images, it would only seg-
ment the locally homogeneous regions, corresponding to various levels of detail of the
texture.

4 Conclusions

We presented a new algorithm for low-level multiscale image segmentation. The al-
gorithm is capable of detecting low-level image structures having arbitrary shapes, at

arbitrary homogeneity levels. A low-level image structure, or region, is defined as a con-
nected set of pixels surrounded by ramp discontinuities. To detect regions, the image
is converted to a ramp magnitude map. We name this conversion as the ramp trans-
form. Then we find the basins of the ramp magnitude map, and consequently obtain
region seeds. These seeds are grown by a relaxation labeling procedure to get the fi-
nal segmentation. After this, we obtain multi-photometric scale segmentation by doing
a multiscale analysis over a range of scales where, at each scale, boundary fragments
having less contrast than the current scale are removed. This process guarantees a strict
hierarchy. Using this property, we arrange the regions into a tree data structure. For
empirical study, we created a new low-level segmentation dataset and showed that our
algorithm outperforms two widely used segmentation algorithms.

Acknowledgments The support of the Office of Naval Research under grant N00014-
09-1-0017 and the National Science Foundation under grant IIS 08-12188 is gratefully
acknowledged.

References
1. N. Ahuja. A transform for multiscale image segmentation by integrated edge and region

detection. IEEE Trans. Pattern Anal. Mach. Intell., 18(12):1211–1235, 1996. 2
2. H. Arora and N. Ahuja. Analysis of ramp discontinuity model for multiscale image segmen-

tation. In ICPR ’06: Int’l Conf. on Pattern Recog., pages 99–103, 2006. 2
3. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.

IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619, 2002. 2, 9
4. D. Comaniciu, V. Ramesh, and P. Meer. The variable bandwidth mean shift and data-driven

scale selection. In ICCV, pages 438–445, 2001. 2
5. J. H. Elder and S. W. Zucker. Local scale control for edge detection and blur estimation.

IEEE Trans. Pattern Anal. Mach. Intell., 20(7):699–716, 1998. 7
6. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J.

Comput. Vision, 59(2):167–181, 2004. 9
7. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6(11):721–741, 1984. 1
8. R. M. Haralick and L. G. Shapiro. Survey- image segmentation techniques. Computer Vision

Graphics and Image Processing, 29:100–132, 1985. 1
9. D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001. 2, 8

10. D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell.,
26(5):530–549, 2004. 8, 9

11. F. Meyer and S. Beucher. Morphological segmentation. J. Vis. Comm. Image Represent.,
pages 21–46, 1990. 1

12. A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation operations.
Systems, Man and Cybernetics, IEEE Transactions on, 6(6):420–433, 1976. 4

13. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell., 22(8):888–905, 2000. 2, 9

14. C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on
Image Processing, 7(3):359–369, 1998. 1

15. R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. In CVPR ’04:
Int’l Conf. on Computer Vision and Pattern Recog., pages 437–444, 2004. 2

