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Abstract

Variation in object shape is an important visual cue for de-
formable object recognition and classification. In this pa-
per, we present an approach to model gradual changes in
the �-D shape of an object. We represent �-D region shape
in terms of the spatial frequency content of the region con-
tour using Fourier coefficients. The temporal changes in
these coefficients are used as the temporal signatures of the
shape changes. Specifically, we use autoregressive model
of the coefficient series. We demonstrate the efficacy of the
model on several applications. First, we use the model pa-
rameters as discriminating features for object recognition
and classification. Second, we show the use of the model for
synthesis of dynamic shape using the model learned from a
given image sequence. Third, we show that, with its capa-
bility of predicting shape, the model can be used to predict
contours of moving regions which can be used as initial es-
timates for the contour based tracking methods.

1. Introduction
Changes in the shape of a dynamic object offer important
cues for object recognition. In this paper, we are concerned
with models of gradual changes in the shape of a �-D region.
We present a simple model of shape variation which was
seen limited use in the past work. This model models the
changes in the �-D shape of a region in terms of the changes
in its contour representation. Specifically, an autoregressive
time series model of the changes in the Fourier coefficients
of the region contour is used. We use it to model, recognize,
and synthesize �-D dynamic shape. We present applications
to (i) modeling fire motion and detecting fire in video se-
quences, (ii) classification of objects based on motion pat-
terns, (iii) synthesis of novel image sequences of evolving
shapes, and (iv) object boundary prediction for use by con-
tour tracking methods.

The �-D shape representation and its use has received
much attention in computer vision. A survey of shape anal-
ysis methods can be found in [7]. Pavlidis [11] proposed the

following three classifications for shape based methods us-
ing different criteria. (i) Boundary (or External) or Global
(or Internal): Algorithms that use region contour are classi-
fied as external and boundary, such as Fourier transforms
based approaches; Those that use interior region for the
analysis are classified as internal and global, such as mo-
ment based methods. (ii) Numeric or Non-numeric: This
classification is based on the result of the analysis. For in-
stance, medial axis transform generates a new image with a
symmetric axis, and is categorized as non-numeric. In con-
trast, Fourier and moment based methods produce scalar
numbers, and thus are in numeric category. (iii) Informa-
tion Preserving or Non-preserving: Approaches that allow
users to reconstruct shapes from their shape descriptors are
classified as information preserving. Otherwise, they are
information non-preserving.

We propose a dynamic shape model that describes shape
at any given time using Fourier transform coefficients and
an autoregressive (AR) model to capture the temporal
changes in these coefficients. The Fourier description pos-
sesses boundary, numeric, and information preserving prop-
erties. The autoregressive model is a simple probabilistic
model that has shown remarkable effectiveness in the map-
ping and prediction of signals. As Srivastava [19] points
out, the temporal change of Fourier representation may not
be linear. However, a linear model is more manageable to
approximate such a process, and requires a small number of
observations to estimate parameters.

The remainder of this paper is organized as follows. In
Section 2, we present our dynamic shape model and its pa-
rameter estimation. In Section 3, we apply the proposed ap-
proach to modeling and detection of fire in video sequences.
In Section 4, we classify several objects and visual phe-
nomena based on their evolving region contours. In Sec-
tion 5, we apply the model to synthesis of evolving shape
sequences. In Section 6, we use our model to predict ob-
ject shape in a video sequence for object contour tracking.
Section 7 discusses the limitations of the proposed model.
Section 8 summarizes the contribution of this work.



2. Dynamic Shape Model
Our dynamic shape model includes two parts: a spatial rep-
resentation of �-D shape and a temporal representation of
shape variation. The detailed model and its parameter es-
timation are described in the following sections. We also
compare our model to other relevant models.

2.1. Spatial Representation of Shape
Fourier Descriptors (FD), the Fourier Transform coeffi-
cients of the shape boundary, represents a �-D shape us-
ing an �-D function. There are several variations of Fourier
based �-D boundary representation in literature [9]. In this
paper, we use Persoon and Fu’s method [13] for its simplic-
ity.

Given an extracted region in an image, we first retrieve
its boundary using eight-connected chain code. Assume
that we have � points from the chain code representation
of the boundary. We express these points in complex form:
������ � �� � ����
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wise. The coefficients of the Discrete Fourier Transform
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If � harmonics are used (� � ����

�
�), the coefficients

����
�
���� are the Fourier Descriptors used to character-

ize the shape. To reconstruct � boundary points ���������
using � harmonics, we perform inverse DFT as:
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Note that �� � �

�

��
��� �� represents the center of grav-

ity of the �-D boundary, which does not carry shape infor-
mation. We neglect this term to achieve translation invari-
ance for recognition and classification. We keep this term
for synthesis and shape prediction because it accounts for
scale changes.

Most related works in Fourier based shape description
discuss about similarity measures that make FD invariant to
relevant transformations, e.g., rotation, translation and scal-
ing. The requirement for each invariance depends on the
applications. In this paper, we do not consider rotation in-
variance because we need to reconstruct the boundary of
shape. Since rotation invariance is not relevant, we can
always choose the starting point as the topmost boundary
pixel along the vertical axis through the center of gravity of
the entire shape. Our representation approximates scale in-
variance (if we drop �� term) since we have dense sampling
of points along region boundary using chain code. Chain

code expression discretizes the arc and Equation (1) nor-
malizes the arc length �.

2.2. Temporal Representation of Shape Varia-
tion

The stochastic characteristics of boundary motion are esti-
mated by an autoregressive model of changes in Fourier co-
efficients of the region boundary. The autoregressive (AR)
model, also known as a linear dynamical system (LDS), is
used based on the assumption that each term in the time se-
ries depends linearly on several previous terms along with
a noise term [8]. In this work, the AR model is used to
capture different levels of temporal variation in FDs.

Suppose �� are the -dimensional random vectors ob-
served at equal time intervals. The -variate AR model of
order � (denoted as AR(�) model) is defined as

�� � � �
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���
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 (3)

The matrices�� � ���� are the coefficient matrices of the
AR(�) model, and the -dimensional vectors �� are uncor-
related random vectors with zero mean. The-dimensional
parameter vector � is a vector of intercept terms that is in-
cluded to allow for a nonzero mean of the time series.

Our dynamic shape model uses FDs to represent shape,
so the random vector �� is in a form of FD at time 	.
To select the optimum order of the AR model, we adopt
Schwarz’s Bayesian Criterion [16] which chooses the order
of the model so as to minimize the forecast mean-squared
error. We estimate the parameters of our AR model using
Neumaier and Schneider’s algorithm [10] which ensures the
uniqueness of estimated AR parameters using a set of nor-
malization conditions.

2.3. Comparison to Other Models
Models of active contour tracking that predict contour mo-
tion and deformation [1, 3, 23] have been proposed to ac-
count for dynamic object shape. For example, Terzopou-
los and Szeliski [23] incorporate Kalman filtering with the
original snake model [4]. Blake et al. [1] propose a con-
tour tracking method that works particularly well for affine
deformation of object shape. Snake based methods process
the contour directly in the spatial domain and consider lo-
cal deformations [4, 12]. In contrast, in our representation,
shape information is distributed in each coefficient of FD.
Thus, we consider global deformations. Only a few meth-
ods, such as [1, 22], consider both local and global deforma-
tions. Local deformations of all contour points comprise too
large a data set to be convenient for shape recognition and

�Note: scale invariance is achieved if the distances between a pixel and
its eight neighbors are considered as equal.



classification. In addition, models of active contour track-
ing predict motion and deformation for one image frame.
In contrast, we model global temporal characteristics of a
whole image sequence. Most importantly, most work on
deformable shape modeling is aimed at region contour iden-
tification by using a deformable, evolving snake to converge
on the desired contour. Instead, in our work, the evolving
shape description is aimed at describing a temporal chang-
ing shape.

There is also some work using level sets to represent dy-
namic shape such as [26]. The advantage of the level set
method is its ability to handle topology changes. However,
as will be shown later, our model requires significantly less
computation.

3. Application I: Recognition
In this section, we will show that using the temporal infor-
mation of shape variation improves recognition results that
use shape only. We choose the problem of fire recognition
in video sequences as an example.

Fire has diverse, multispectral signatures, several of
which have been utilized to devise different methods for
its detection. Most of the methods can be categorized into
smoke, heat, or radiation detection. However, there are only
a few papers about fire detection in computer vision liter-
ature. Healey et al. [2] use a purely color based model.
Phillips et al. [14] use pixel color and its temporal variation,
which does not capture the temporal property of fire which
is more complex and requires a region level representation.

3.1. Fire Detection Algorithms
Our fire detection algorithms include two main steps: (i)
Extract potential fire regions in each image; and (ii) Rep-
resent each extracted region using FD and AR parameters,
and then use a classifier to recognize fire regions.

To extract potential fire regions in each image, we use
algorithms described in [6]. For each potential fire region,
we represent it independently by taking the magnitude of
its FDs. We then find matching regions in previous images
of the sequence, and estimate parameters of the AR model
for the corresponding fire regions. The FD and estimated
AR parameters are both used as features of current region.
We use a two-class Support Vector Machine (SVM) classi-
fier [24] with RBF kernel for fire region recognition.

3.2. Experimental Results
The video clips used in our experiments are taken from a
random selection of commercial/training video tapes. They
include different types of fires such as residential fire, ware-
house fire, and wildland fire. We use images captured at
day time, dusk or night time to evaluate system performance

Figure 1: Selected fire images used in experiments.

under different lighting conditions. We also use other im-
age sequences containing objects with fire-like appearances
such as sun and light bulbs as negative examples. The video
clips that we tested our algorithm on contain a total of 	
��
image frames in 	� sequences. Figure 1 shows some se-
lected fire images used in our experiments. The (red) con-
tours depicted in the images are the detected fire region con-
tours.

In our test data, the potential region extraction algorithm
extracted a total of �	�
 fire-like region contours, ��
 of
which were true fire region contours. For shape representa-
tion in terms of Fourier Descriptors, we find that using 40
coefficients (i.e. � � �) is sufficient to approximate the
relevant properties of the fire region contours. In this exper-
iment, we assume that different FDs at any given time 	 are
independent of each other, so we have diagonal coefficient
matrices in our AR model, where ������ �  if  �� �.
Thus it can be viewed as modeling �� independent time
series. We also find that the AR(1) model yields the mini-
mal forecast mean-squared error. Therefore, we use � AR
coefficients to represent the stochastic characteristics of the
temporal changes in FDs.

Table 1: Recognition rate of fire and non-fire contour recog-
nition.

Experiments Fire Non-Fire
Use shape only (FD) 0.996 0.904

Use shape + evolution (FD + AR) 0.999 1.0

We tested our algorithms in two ways: The first set of
experiments with only spatial information of region con-
tours (FD only as the feature vector), and the second set
of experiments with spatial and temporal information of re-
gion contour evolution (FD and AR parameters as the fea-



ture vector). In the second set of experiments, we required
that a fire contour be seen in at least previous four frames.
Note that three frames are the minimum requirement to es-
timate parameters of our AR(1) model. For each set of ex-
periments, we repeated the test ten times using one-tenth
of fire and non-fire region contours to train the SVM clas-
sifier, and the other region contours for test. In this way,
we used many more fire examples than counter examples
on training. This was intended to tilt the detector in favor
of false positives vs false negatives as corroborated by the
experimental results. The average recognition rate is shown
in Table 1. It is clear that temporal information of shape
evolution indeed improved the detection performance and
reduced false alarm rate significantly.

4. Application II: Classification
In this section, we demonstrate that the temporal informa-
tion of shape variation alone is a good discriminant for clas-
sifying several objects and visual phenomena. Under our
proposed framework, we show that object shape variation is
indeed an important visual cue for object classification.

Follow the model presented in Section 2. Assume that
� harmonics in the FDs are used to represent the region
boundary of an object in each image of the sequence, and
AR(1) model is used to describe boundary dynamics. We
then have �� AR coefficients to represent the temporal
characteristics of the evolving object shape in an image se-
quence. Let ���� and ���� be AR coefficients modeling
a dynamic shape � and a dynamic shape �, respectively.
We define the distance between the two dynamic shape se-
quences as

���� �� � �

���
���

��� � ���
���	�
 (4)

A simple nearest-neighbor classifier using metric (4) is used
for classification.

4.1. Experimental Results
The image sequences used in the experiments include two
running human sequences, three waving flag sequences, and
two fire sequences. The fire contours are extracted as de-
scribed in [6]; The region boundaries of flags and running
human are semi-automatically extracted using active con-
tour method [4] for each image frame. We use forty FDs to
approximate each object boundary. The AR parameters are
estimated using each whole sequence. Therefore, the esti-
mated AR parameters represent the global dynamics of the
object boundary in a sequence. The experiments are done
using the cross-validation method. Only one out of seven
image sequences is misclassified, where a running human
sequence is classified as a waving flag sequence.

5. Application III: Synthesis
In this section, we apply our model to synthesis of dynamic
shape. In particular, we synthesize fire boundary sequences,
where the dynamic shape model is obtained from a fire im-
age sequence in as described Section 3. We choose fire as
an example because fire region can be modeled as nested
subregions, where each subregion shows temporal variation
(see Figure 2, leftmost image).

Synthesis of dynamic shape is a novel topic in computer
vision. The most relevant work are those of image based dy-
namic/temporal texture synthesis. Some of them use only
local image structures and ignore the underlying dynam-
ics [25]. Some other works that learn the underlying dy-
namics in pixel level [21] or in image subspace [18] do not
use region level image structures. Instead, they learn the
global dynamics of the whole image. In our method, we
learn the dynamics of regions using region boundaries.

Many physics based methods have been proposed to pro-
duce visual phenomena such as fire [15, 17, 20]. How-
ever, since these methods do not learn dynamics from im-
ages, they are not capable of generating subsequent images
based on a given image. Image based method, such as [18],
generates an image sequence if given an initial image and
the learned image dynamics. But the resulting images will
show significant artifacts if the region of motion is not fixed.
Our approach is image based, and it directly deals with tem-
poral variation of regions.

5.1. Synthesis Results
Our synthesis of new sequence is based on Equation (3),
after AR parameters have been estimated from the given
image sequence. For a given initial image, we retrieve the
object boundary in the image and represent it using FDs.
We perform desired number of iterations of the AR model
to estimate FDs for the entire synthesis sequence. The shape
sequence are reconstructed using the estimated FDs (2).

In this experiment, we use a fire sequence as a training
example. A fire region is modeled as a nested ring struc-
ture where each ring is associated with a color spectrum.
Although the changes in color is continuous, we threshold
the fire region (by grayscale intensity) into three subregions.
Each region boundary in the given image sequence are in-
dependently modeled by our approach. The color spectra
of each region are modeled as a mixture of Gaussian. Once
the parameters of three AR models have been estimated,
we use the mean boundaries in the given sequence as initial
boundaries, and simulate the AR models to generate sub-
sequent boundaries. An inner region boundary is confined
to its outer region boundary so that we maintain the nested
ring structure. To avoid spin-up effects, the first thousand
time steps of the AR models are discarded. The pixel colors
of each region are drawn from respective color models. Fig-



ure 2 shows the nested ring model, an example fire image
of the input video and some selected synthesized fire image
frames.

Our method is capable of solving the following two prob-
lems: Given a fire image sequence, (i) generate a new se-
quence of fire shapes, where both shapes and dynamics are
similar to the given image sequence; (ii) also given an initial
fire shape, generate a new sequence of fire shapes, where the
dynamics is similar to the given image sequence. To achieve
photo-realistic fire rendering, since we can solve problem
(i), we need only a more sophisticated model that enforces
spectral gradient to fill colors in the synthesized fire re-
gion. For non-photo-realistic fire rendering, such as car-
toon drawing, we ask artists to draw fire regions as nested
rings and assign a color for each subregion. Our approach
will automatically generate subsequent images based on the
learned dynamical model. The synthesized sequence can
then be overlaid into other image sequences.

6. Application IV: Shape Prediction
The capability of predicting shape comes naturally in our
dynamic shape model. In this section, we apply our method
to tracking deformable objects. The contour based tracking
methods consist two parts: obtaining an initial contour and
conforming the initial contour to object boundary. A good
initial contour estimate provides a predicted contour closer
to true object boundary in both geometry and position.

Most works on contour tracking are based on the active
contour model (or snake model) proposed by Kass et al. [4].
Some works assume that the motion of the object is slow
and its deformation is small [5]. So the optimal contour
estimate in the previous image frame is used as the initial
contour in the current frame. When the changes in shape
are large, these methods are very likely to fail. Other works
that estimate motion and deformation are compared to our
method in Section 2.3.

Using our proposed framework, the contours are again
represented by FDs. To account for large changes in shape,
we estimate our AR model locally using a small number
of previous image frames. A first-order AR model is esti-
mated. Then the initial contour is predicted by Equation 3
with �� � . Note that the zeroth term of FDs has posi-
tional information. So our dynamical model simultaneously
predicts the position and shape for the current image frame.
Any contour based tracking methods can then be used to
conform the contour to object boundary.

6.1. Experimental Results
We test our algorithms using a Bream sequence, where a
fish initially swims to the right, makes a sharp turn, and
then swims to the left. We choose this image sequence be-
cause there are large changes in shape when the fish makes

Figure 3: The green contour is predicted by our dynamic
shape model, and the red contour is the optimal contour of
the previous image frame with predicted translation.

a sharp turn, which makes the tracking challenging. We
compare our method to the method that predicts only shape
translation but not shape deformation.

Figure 3 shows the estimated initial contours of both
methods. It is clear that our method accounts for scale
change in horizontal dimension, but the other method does
not. The fin on the upper right side of the fish is partially
occluded in the previous image frame. Both methods do not
predict this discontinuous change in shape. But our method
does move the fin upward according to its appearance in
previous image frames. The quality of the converged con-
tour by any snake model will benefit from a better initial
shape prediction.

7. Limitations
In Section 2.1, we approximate scale invariance for FD by
densely sampling along the boundary to obtain the chain-
code. However, for small regions, the spatial quantization
is likely to introduce considerable noise to the FD. To avoid
this problem, we eliminate regions smaller than a certain
size. Consequently, our model does not detect small or far
away fires. Small regions are expected to increase misclas-
sification rate and synthesis results are better for larger re-
gions.

The AR model is a linear dynamical system. There may
be cases where linear model is not sufficient. In such cases,
nonlinear dynamical model can be adopted under the pro-
posed framework. Similarly, any other shape description
method with boundary, numeric, and information preserv-
ing properties may be used in place of FD.

8. Conclusion
In this paper, we have proposed a novel model for dy-
namic shape. Although both FD and AR model have been



Figure 2: Leftmost image: A nested ring structure models the fire region. Second image: An example fire image from the
given video sequence. Others: Selected frames of the synthesized fire image sequence.

well established, using them together to analyze temporal
shape variation is not discussed in literature. Traditional
shape analysis focuses on spatial similarity, but not tempo-
ral similarity. The autoregressive model has been applied
mainly to model �-D signals [8] and �-D pixel interdepen-
dences [18, 21]. We are not aware of any work on AR mod-
eling of region shape changes.
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