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Matching Two Perspective Views
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Abstract—Establishing correspondences between different per-
spective images of the same scene is one of the most challenging
and critical steps in motion and scene analysis. Part of the
difficulty is due to a wide variety of 3-D structural discon-
tinuities and occlusions that occur in real-world scenes. This
paper describes a computational approach to image matching
that uses multiple attributes associated with each image point to
yield a generally overdetermined system of constraints, taking
into account possible structural discontinuities and occlusions. In
the algorithm implemented, intensity, edgeness, and cornerness
attributes are used in conjunction with the constraints arising
from intraregional smoothness, field continuity and discontinu-
ity, and occlusions to compute dense displacement fields and
occlusion maps along the pixel grids. The intensity, edgeness,
and cornerness are invariant under rigid motion in the image
plane. In order to cope with large disparities, a multiresolution
multigrid structure is employed. Coarser level edgeness and
cornerness measures are obtained by blurring the finer level
measures. The algorithm has been tested on real-world scenes
with depth discontinuities and occlusions. A special case of two-
view matching is stereo matching, where the motion between
two images is known. The algorithm can be easily specialized
to perform stereo matching using the epipolar constraint.

Index Terms—Dynamic scene analysis, motion estimation, op-
tical flow, stereo matching, structure from motion, two-view
matching.

I. INTRODUCTION

IME-VARYING images of real-world scenes can provide

kinematical, dynamical, and structural information of the
world. To estimate from the image sequences the 3-D motion
and structure of objects, it is often necessary to establish
correspondences between images, i.e., to identify in the images
the projections that correspond to the same physical part of the
sensed scene. This paper presents an approach to matching
two images of a scene that enforces similarity of matched
multiple low-level features as well as structural smoothness
of the displacement field while allowing for occlusions and
discontinuities.

The existing techniques for general two-view matching
roughly fall into two categories: continuous and discrete.

1) Continuous Approaches: Although the approaches in this
category compute the image velocity ficld instead of per-
forming explicit matching between features, the computed
velocity field amounts to image matching. Each velocity
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vector approximates the correspondence between two points
in different images. In practice, an optical flow field, which is
the field derived from sensed optical projections of the scene, is
used to approximate the actual image plane velocity field with
small magnitudes. The techniques in this category typically
need the condition that the interframe motion is small and the
intensity function is smooth and well behaved. The optical
flow may be computed based on the spatiotemporal variation
of the image intensity function [16], [29], (1], [24], [17] [13].
Although the flow of intensity is not exactly the same as the
projection of 3-D velocity [16], [28], they are considered to
be similar under some conditions. From the assumption that
the intensity of a point is conserved from image to image, a
linear equation in the two components of the velocity vector

(a,ﬁ)é(fl—‘t‘, vy at the point can be derived:

=0.
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This equation alone is insufficient to determine the two compo-
nents of the vector (a, 3). A variety of smoothness constraints
is proposed to solve this underdetermined problem. A typical
one is minimizing [ [ ||Val||?+(|V3||*dudv proposed by Horn
and Schunck [16]. Since this isotropic smoothness constraint is
inappropriate across the image of occluding edges, Nagel and
Enkelmann introduced some controlled smoothness constraints
with a goal of smoothing along an edge direction at edge points
and smoothing isotropically at points having small spatial
gradient [24]. These types of methods are commonly called
(intensity) gradient-based methods. Another method is based
on spatiotemporal filters [1], [13]. A family of Gabor-energy
filters tuned to different spatial orientations and temporal
frequencies are applied to a dense image sequence. Image
velocity (a, 3) is determined by minimizing the difference
between the measured motion energies (from the response of
Gabor filters) and those predicted for a pattern with a flat
power spectrum.

2) Discrete Approaches: The techniques in this category
treat the images as temporal samples taken at discrete times
and select discrete features that are to be matched. Points with
high intensity variation are often used as the matching features
[27], [4], [9]. Other features used for matching include closed
contours of zero crossings of Laplacian-of-Gaussian images
to compute velocity field [14], edges for stereo matching [21],
[22], [11], [25], [15], straight lines for stereo matching (31
correlation of intensity patterns [10] [2], and other aspects of
the scene structure [12], [20].

Continuous approaches usually compute optical flow field
along a pixel grid. There is no need for explicit feature
extraction and matching. The matching is performed through
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numerical minimization. These approaches can potentially
derive dense depth maps. However, they face the following
problems:

1. The existing approaches resort to a smoothness con-
straint to make the underdetermined problem solvable.
When discontinuities occur in the velocity field, severe
€ITOTS OCCUT.

2. Since the interframe motion is restricted to be small, the
magnitudes of flow vectors are also small (usually within
a couple of pixels). Therefore, the velocities computed
can be easily overridden by pixel-level perturbations.
Such a flow with very low SNR limits the inherent
stability of motion analysis [31].

Moreover, contrary to a common belief that the inter-
frame disparity is small in a video rate sequence, one
often must deal with large disparities even if a complete
video rate sequence is used. For example, suppose a
mobile robot travels at a typical human walking speed
(6 km/hr) on which a CCD video camera mounted with
an f=16 mm normal lens is aimed to the side scene;
then, in the video rate sequence (30 frames/s) taken by
the camera, the interframe disparity of the objects at 2
m away is around 30 pixels. With such a disparity, most
optical flow estimation algorithms that assume small
interframe disparities will fail. Camera pan actions often
result in much larger interframe disparities (whereas an
electronic shutter can guarantee a sharp frame).

3. The assumption that the intensity of the same object
patch is constant in different images is not strictly true.

4. Well-behaved and well-textured intensity images are
required for the techniques to be applicable.

Discrete approaches allow either small motion or large
motion, corresponding to short range process and long range
process, respectively [7], [8]. Accurate estimation for the
motion parameters and structure of the scene is possible under
a relatively large motion. Discrete approaches do not suffer
from the problem of varying image intensity with continuous
approaches since the existence of the discrete features is
relatively more stable than intensity values. Moreover, the in-
tensity surfaces need not be smooth. However, the approaches
in this category also have problems:

1. It is difficult to reliably match discrete features because

a feature cannot be easily distinguished from others.
There exists a large number of potential candidates for
matching, and no powerful scheme is available to select
the correct one.

2. Since the features are generally sparse, only sparse
depth data can be obtained. This makes it harder to
estimate surfaces. Usually, surface interpolation has to
be performed to give a complete surface from the sparse
depth data. However, the interpolated surfaces are often
quite different from the real surfaces.

3. Features may be detected in one image but not in the
other, e.g., due to occlusion. These create more problems
of mismatches.

4. To make the matching possible, various smoothness
constraints are usually used, which may be invalid at
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occlusion and motion boundaries. Because the features
are sparse, the lack of neighboring information makes the
detection of discontinuities and occlusions very difficult.

In this paper, we present a new approach to image match-
ing that takes advantages of both continuous and discrete
approaches. Our method is characterized by the following
features:

A. Discrete features are represented by their values in

the corresponding attribute images, and these attributes
are blurred to different resolution levels to provide
information needed for matching. Therefore, although
the method is based on discrete features, it has essen-
tially avoided the problem of inconsistency of feature
detection between different frames.

- Multiple attributes associated with the images are fully

employed to yield an overdetermined system of match-
ing constraints. This helps to combat noise and accom-
modates, to a certain degree, slight changes in image
intensity due to changes in viewing position, lighting,
shading, and reflection. Futher, and more importantly,
the displacement vector is completely determined by
those matching constraints.

. A mechanism is incorporated into the approach to deal

with uniform nontextured object surfaces that are often
present in real-world images. We also present a simple
and effective method to cope with discontinuities of
displacement field. In fact, handling nontextured sur-
faces and preserving disparity discontinuities are two
challenging issues in image matching.

. Although the difficult problem of occlusion has been

largely ignored in the literature, it cannot be ignored
here due to the presence of large disparities. The al-
gorithm presented in this paper introduces a technique
of computing the occlusion maps. The occluded regions
are marked to prevent mismatching. Our matching al-
gorithm has been tested on images of real-world scenes
with significant occlusions.

. Our method can deal with large disparities. The al-

gorithm has been tested with disparities as large as
over 80 pixels. As we mentioned above, large image
disparities are very important to the accuracy of the
estimated motion and structure of a moving scene and
are often present in video rate image sequences. In
our method, a multiresolution multigrid computational
scheme is employed to deal with large disparities. Vari-
ous coarse-to-fine strategies have been used by a number
of researchers for stereo matching (a partial list includes
[21], [23], [26], [11], [5], [15]). In our work, the
multiresolution multigrid scheme makes the computation
of large disparity reliable and efficient, whereas it is
integrated with the use of multiple attributes, the detec-
tion of disparity discontinuities, and the computation of
occluded regions.

The results computed by our matching algorithm have been
used by our motion and structure estimation algorithm, and
consequently, we are able to compute dense depth maps of
real-world scenes under large unknown motions. The compu-
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tational approach and the experimental results presented in this
paper serve to bridge the gap between the point-based methods
(which assume point correspondences) and the image inputs
and indicate, to certain degree, whether structure from motion
is possible in real-world situations.

The next section presents our approach to image matching.
Section III proceeds with formal definitions, analyses, and
details of the algorithm. Section IV discusses some further
refinements. The experimental results are shown in Section V.
Finally, Section VI presents a summary and discussion.

II. AN APPROACH TO IMAGE MATCHING

Formally, two images I and I’ are defined by two functions:
i:U—Bandi :U — B, where U C R?, and B C R for
monochrome images (B C R3 for color images). U defines the
image plane. Functions ¢ and ¢ map each point in the image
plane to an intensity value. Without loss of generality, we
assume that the image intensity is given in a finite normalized
image plane

U={(uv)T|0<u<1,0<v<1}

with intensity in a normalized range B = {i | 0 <7 < 255}
(for monochrome images). In a camera-centered coordinate
system, a time-varying 3-D scene II at time ¢ is a collection
of measurable sets in R, II ¢ R3, and similarly IT' ¢ R?
is the 3-D scene at time /. A motion is a mapping from
IMtoII': m : II — II' (although a term “displacement” or
“transformation” may be more appropriate here, we still use
the term “motion” since it is a conventional term for image
sequence analysis). A motion m is 1 to 1 and onto (1 to 1
correspondence). The projection of a point z = (z,y,2)T in
a scene II is defined by p : T — R? such that

p(z) = (z/z,y/2)" @2.1)

which corresponds to the perspective projection of a pinhole
camera with a normalized unit focal length [30]. Since the
universe is unlimited, we assume for any image point u, there
will always be some point in the scene whose projection is u.
Namely, the projections of IT and II’ cover entire image plane
U: U c p(Il), U C p(Il").

A point € II is visible if and only if p(x) € U and there
is no y € I, ||yl| < ||z||, such that p(z) = p(y). An occlusion
map O for image I consists of those image points in U whose
corresponding 3-D point £ € II is visible, but the moved point
m(z) is not visible. Similarly, we define O’ as the occlusion
map for image I'.

An image matching from I to I is a mapping K : U — U
that satisfies the following. For any u € U — O (the symbol
— denotes set subtraction), letting its corresponding 3-D point
be «, then k(u) = p(m(z)). Similarly, we define &' as the
matching from I’ to 1. Notice that the mapping from an
occluded point u € O is arbitrary, and therefore, it can be
assigned, e.g, according to some smoothness constraint. The
displacement field is defined by d = & — e, where e is an
identity mapping e(u) = u for all « € RZ?. Therefore, the
matched image point for u is v’ = s(u) = u + d(u). We
will use the term “displacement field” to refer to the result of
image matching.

|
AN AN
| |

(a) (®)

Fig. 1. Matching based on intensity is not sufficient to determine matching:
(a) Point can be matched to any point with a similar intensity; (b) use of
edges reduces the uncertainty in matching.

A. Image Attributes

What information do we need to compute the displacement
field from two images? A type of attribute associated with
images is motion invariant if its value does not change from
image to image under any motion. Motion invariant attributes
are desirable since the conservation of such attributes for the
matched image points can be used as a criterion for match-
ing process. Unfortunately, there exist no motion invariant
attributes under general situations. We instead proceed to
search for motion-insensitive attributes, i.e., those attributes
that generally sustain only small changes under motion. In fact,
the intensity is motion insensitive under some appropriate con-
ditions (e.g., with matte surfaces and extended light sources).
Fig. 13 shows a pair of monochrome images of a laboratory
scene taken at two different positions. From those two images,
it can be seen that the corresponding regions have similar
intensity values. We call this intensity similarity criterion.

If the matching is based on intensity only, a point can be
matched to any point with the same or similar intensity. A 1-D
example is shown in Fig. 1(a). The problem is more severe
in 2-D images, where a point can be potentially matched to a
wide region with similar intensities.

In fact, the information used for image matching by human
vision is not just individual unrelated points with intensity
values. What is matched over time by human vision is the
structure of images [27], [8], ie., the spatial relationships
among image points. Higher level structural information, e.g.,
shape of region and spatial relationships between regions is
obviously useful for matching. However, this type of informa-
tion is very unstable under motion and occlusion. For example,
the shape of a 3-D region may change significantly if they are
viewed from different positions due to foreshortening. We are
interested in low-level structural attributes that are insensitive
to motion and involve only a very small neighborhood around
an image point so that occlusions will not cause significant
match errors in a large area.

A candidate for structural information for matching relates
to sharp transitions of intensity—edges. As shown in Fig.
1(b), if we match two edges and tolerate a small difference
in intensity, the resulting matching is correct. Edges are
motion-insensitive since sharp intensity transition will gen-
erally remain a sharp transition after a moderate amount of
motion. The criterion that a given edge should be matched to
another edge with similar edgeness measure is called edgeness
similarity criterion.

However, intensity similarity and edgeness similarity are
often not sufficient to determine matches. For example, if a
closed contour is rotated as shown in Fig. 2, the intensity
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Fig. 2. Intensity and edges are not sufficient to yield a correct match: (a)
Closed contour is rotated. The “needles” show true displacement vectors; (b)
displacement vectors determined from local edge flow. Even if the variation of
displacement field is minimized along the contour, the resulting displacement
field is still not correct (see [14]).

similarity, edgeness similarity, and smoothness are not suf-
ficient to determine the correct match. Even if the variation
of displacement field is minimized along the contour, the
resulting displacement field is still not correct [14]. The
problem here is that the similarity of the contour shape is
neglected. Corners or high curvature points indicate the shape
of a contour. Matching corner points unambiguously determine
the displacement vector. In general, a right corner (the point at
the apex of a right angle along an edge contour) should result
in a high absolute measure of cornerness compared with that of
the other angles. The sign of a corner should be such that it can
distinguish a corner of a white rectangle on a black background
from that of a black rectangle on a white background. Since
the shape of an iso-intensity contour is very unstable in a
flat region where intensity gradient is small, the cornerness
measurement at a flat region should be low. In other words, we
should assign high cornerness measure only to those corners
that are on edges. An example of the formal definition of the
cornerness will be given in Section II-D. The criterion that
a point should be matched to a point with similar cornerness
measure is called the cornerness similarity criterion.

The algorithm described in this paper uses the intensity, ed-
geness, and cornerness attributes for matching. The framework
of our approach is such that additional attributes (e.g., color)
could be easily included.

B. Relationships of the Antributes

We have discussed intensity, edgeness, and cornerness as
the primary attributes for matching. These attributes measure
different properties of the local intensity surfaces associated
with an image point.

A corner point is isolated; it constitutes a zero dimensional
point set. Matched corners constrain the displacement vector
completely. Edges usually form a contour: a 1-D point set.
Locally, if a section of edge is matched with another edge,
the displacement vector, starting from an edge point, can be
terminated at any point on the matched edge. This uncertainty
is commonly referred to as the aperture problem. Similarly, a
point can be matched to any point in a region having the same
intensity. This is a 2-D aperture problem.

Although matched corners completely determine the dis-
placement vector, corners alone are not sufficient to determine
the entire displacement field. First, we cannot guarantee that
corners are available everywhere in images. Second, clusters of
corners are difficult to match without additional support from
other attributes. Fig. 3 shows an example, where without edge
and intensity information, the corners tend to be mismatched.

309
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Fig. 3. Without edge and intensity information, corner points tend to be
mismatched: (a) Without intensity and edge information; (b) with intensity
and edge information.

Vv

(a)

Fig. 4. Without intensity information, edges tend to be mismatched, al-
though, in principle, edge contours can be matched globally. Intensity gives
information that makes matching more reliable and easier: (a) Without
intensity information; (b) with intensity information.

RARANNY

Fig. 5. Sheet of white paper on top of another. Neither the boundary between
the sheets (shown dashed) nor the texture of the paper is visible. When the top
sheet slides along the bottom sheet, the motion is perceived as a stretching
of the union of both sheets.

For similar reasons, corners and edges may not suffice without
the intensity information (see Fig. 4).

Together, intensity, edgeness, and cornerness attributes con-
strain the matching process and generally provide an overde-
termination for image matching.

C. Intraregional Smoothness and Occlusion

In order to deal with real-world images, we must be able to
handle regions with uniform intensity (see Fig. 13). Regions
with uniform intensity often result from the same continuous
surface. This suggests that a uniform region will have a
uniform displacement field. We call this the intraregional
smoothness criterion. The objective of this criterion is to fill
displacement information into those areas where no signifi-
cant intensity variation occurs. However, we cannot impose
smoothness across different regions.

Obviously, this intraregional smoothness assumption is not
always satisfied. Fig. 5 gives such an example, from which one
can see that visual information is not always enough to cor-
rectly infer physical phenomena. The intraregional smoothness
criterion may be consistent with what we perceive but may be
inconsistent with the reality.

To correctly match two images, those scene regions that
are occluded in one or the other image must be identified.
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Occlusion occurs when a part of scene visible in one image
is occluded in the other by the scene itself, or a part of the
scene near the image boundary moves out of the field of view
in the other image. If the occluded regions are not detected,
they may be incorrectly matched to nearby regions, interfering
with the correct matching of these regions. To identify the
occluded regions, we define two occlusion maps: occlusion
map 1, showing parts of image 1 not visible in image 2, and
similarly, occlusion map 2, for image 2 (see Fig. 6, where
black areas denote the occluded regions). We first determine
the displacement field from image 2 to image 1 without
occlusion information. The objective of this matching process
is to compute occlusion map 1. This matching may “jam”
the occluded parts of image 2 (e.g., the right-most section in
Fig. 6) into parts of image 1 (e.g., the right-most section in
Fig. 6). This generally will not affect the computation of the
occlusion map 1 since the occluded regions of image 1 may
only occur on the opposite side across the “jammed” region
(in Fig. 6, e.g., the occluded region of image 1 is to the right
of a “jammed” region). Those regions in image 1 that have
not been matched (in Fig. 6, no arrows pointing to them) are
occluded in image 2 and are therefore marked in the occlusion
map 1 (black in Fig. 6). These unmatched patches may also
be located at the center of the images if they are occluded by
other parts of the scene. Once the occlusion map 1 is obtained,
we then compute the displacement field from image 1 to image
2 except for the occluded regions of image 1. The results of
this step determine occlusion map 2 (see Fig. 6).

Formally, for any image point € U, there is a scene point
z € II such that p(z) = u. From the definition of x and &/, it
is clear that & and &’ are 1 to 1 correspondences from U - O to
U — O’ and from U — O’ to U — O, respectively. Therefore, the
occlusion map O can be determined by O = U — &/(U — 0’),
and similarly, O’ = U — k(U — O). However, this procedure
is recursive. Once one occlusion map is determined, the other
can also be determined. The procedure outlined in Fig. 6 used
preliminary &’ that is computed to determined O without infor-
mation about O’. Since regions in O and O’ are generally far
apart, this preliminary £’ may be good enough to determine O.

D. Multiresolution Multigrid Structure

To find matches over a large disparity requires that we
know approximate locations of the matches since otherwise,
multiple matches may be found. One solution to this problem is
image blurring to filter out high spatial frequency components.
However, a blurred intensity image has very few features
left, and their locations are unreliable. Therefore, instead of
blurring the image first and then measuring edgeness and
cornerness, we blur the original edgeness and cornerness
images (called attribute images here). Since the cornerness
measure has a sign, nearby positive and negative corners may
be blurred to give almost zero values, which is the same
as the result of blurring an area without corners. We there-
fore separate positive and negative corners into two attribute
images. Blurring is done for positive and negative images
separately. Such blurred edgeness and cornerness images are
not directly related to the blurred intensity images. They

Occlusion

map 1

Image 1

Dlsplacemem Dlsplacemem

field 1 field 2

Image 2 Image 2
Occlusion
map 2

N A

Fig. 6. One-dimensional illustration of determining occlusion maps (see
text). Images are represented by lines as 1-D images. The displacement fields
shown just illustrate the correspondences between two 1-D images and not
as actual displacement fields.

are related to the strength and frequency of the occurrence
of the corresponding features or to the texture content of
the original images. Although texture is lost in intensity
images at coarse levels, the blurred edgeness and cornerness
images retain a representation of texture, which is used for
coarse matching. The intraregional smoothness constraint at
coarse levels applies to blurred uniform texture regions (with
averaged intensity). When the computation proceeds to finer
levels, the sharper edgeness and cornerness measures lead to
more accurate matching. Therefore, in general, the algorithm
applies to both textured or nontextured surfaces.

At a coarse resolution, the displacement ficld only needs
to be computed along a coarse grid since the displacement
computed at a coarse resolution is not accurate, and a low
sample rate suffices. A coarse grid also helps to speed up
the propagation of results within uniform regions. In the
approach described in this paper, the coarse displacement field
is projected to the next finer level (copied to the four corre-
sponding grid points), where it is refined. Such a projection-
and-refinement procedure continues down to finer levels suc-
cessively until we get the final results at the original resolution.
The computational structure and data flow used in this process
are shown in Fig. 7.

E. Limitations

It should be noted that our approach is not intended for sit-
uations where matching criteria involve image interpretation.
In some cases, lack of texture in the surface makes correct
matching impossible unless high-level knowledge is used.

Another limitation of our approach is that the criteria for
the similarity of matching attributes may be violated in some
situations. For example, corners may not always correspond to
a physical point: Two lines that do not intersect in 3-D space
may intersect in the images, and the corner arising from such
an intersection may correspond to different scene points as the
viewing position changes. Since, at coarse levels, corners are
blurred to contribute to texture measure, a limited presence
of nonphysical corners or edges at coarse levels is expected
to be overcome by other attributes: intraregional smoothness
and occlusion information. At finer levels, the weight for
cornerness should be reduced since cornerness is not as reliable
as edgeness and intensity, and the strength of cornerness at
finer levels begins to dominate the influence of intensities. A
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Fig. 7. Computational structure and the data flow.

similar but slower reduction is performed for edgeness weights
relative to the intensity weights for the same reasons.

III. ANALYSIS AND ALGORITHM

The approach presented in Section II is general in the
sense that the actual definitions of attributes and details of
the computational steps can vary considerably. In this section,
we will introduce some exact definitions and perform analysis
to provide some insight into the approach. Details of the
implemented algorithm will be discussed as well.

A. Locally Rigid Motion

In Section II, the motion m is required to be a 1 to 1
correspondence between two scenes so that inverse motion
exists to define matching &'. For the approach to perform
well, the motion has to be such that the assumptions for the
similarity of attributes and the intraregional smoothness are
approximately true. Let us investigate one type of motion
that can be locally modeled by piecewise rigid motion. In
other words, we examine those motions that may be nonrigid
globally and may involve individually moving objects, but
locally, each object does not deform drastically.

Suppose that the visible scene II C R3 can be partitioned
into a finite number of subsets I = {II;} such that each II;
has continuously differentiable visible surfaces. We define a
type of motion called locally rigid motion for each of such
surfaces.

Definition 1: A motion m : I — II' is locally rigid if
for any nonboundary point z¢ on a continuously differentiable
surface of II;, there is a positive number § > 0 such that for
any z with ||z — zo]| < 6, m(z) can be expressed by

m(z) = m(zo) + R(zo){z — o} + o]}z — zo))
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or
m(z) = R(zo)z + T(zo) + o(||z — o) (CRY}
where
Om(zx)
R = 7
(o) e

is a rotation matrix, T'(xp) = m(zo) — R(zo)To, and o(v)
denotes a term that satisfies lim,-.o{o(v)/v} = 0. Similarly,
we define locally rigid motion in 2-D space R2.

A rigid motion of II; is a special case of the locally rigid
motion in which R(z¢) and T’z are constant (does not depend
on xp), and the higher order term o(||z — z¢||) is exactly
equal to zero. In a locally rigid motion, the motion in a
small neighborhood around a point is a rigid motion if the
higher order term o(|lz — zo||) is neglected. However, the
global motion may still be significantly different from the rigid
motion because the definition only restricts the infinitesimal
behavior of the motion. Since R(zo) and T'(zo) may vary with
To, the nonzero term o(]jz — zo||) allows significant deviation
from a rigid motion globally.

B. 3-D Motion and Image Plane Motion

The motion we will study in the following arises from
surfaces where each undergoes a locally rigid motion as
discussed above. We need to relate the 3-D motions to the
image plane. Obviously, the projection of the 3-D rigid motion
onto the image plane is not, in general, a 2-D rigid motion. In
the following, we investigate to what degree the image plane
displacement that corresponds to a 3-D locally rigid motion
can be locally approximated by a locally rigid image plane
motion.

According to (3.1), the locally rigid 3-D motion in the
neighborhood of a point z( can be represented by

z' =Rz + T+ o||z - x0])) (32

where ' = m(z), and R and T depend on z,. As defined
in (2.1), let the perspective projection of = (z,y;2)T and
z' = (¢/,y,2')T be u and w, respectively. Equation (3.2)
gives

o = {z/2}{Riiu+ Ris +T1/z + o(llz — zol|)/2} (3.3)

where Ry, is the 2 X 2 upper left submatrix of R, R;5 is the
2 x 1 upper right submatrix (vector) of R, and T'; consists
of the first two components of 7. In general, the submatrix
Ry; is not a rotation matrix. For a rotation about unit vector
n by a small angle #, however, the rotation matrix can be
approximated by

I -y p
R | v 1 -«
-0 « 1

where (a, 8,7) = 6n. Therefore

~ 1 7
fin = [7 L ]
which approximates a 2-D rotation with an angle . In other
words, under a small rotation, R;; can be approximated by a
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2-D rotation matrix M. In fact, a more careful analysis leads
to the conclusion that Ry; can be approximated by a 2-D
rotation matrix M as long as the rotation is small about the
x and y axes, and it can still have a relatively large rotational
component about the Z axis.

The term z/z’ in (3.3) represents a scaling. If the change
in depth |2’ — 2| is significantly smaller than the depth itself
(i.e., |2/ — z|/z < 1, which is usually the case), then

z)2 =1/{1+ {2 —2}/z} = 1.
Using the above two approximations, we can rewrite (3.3) by
o'~ Mpu+V + oz — zol|)/2
where V = Ry + T'1/2 depends on the depth of the point z.
In a small neighborhood of =y, if the depth difference |z — zo|
is small compared with zy (i.e., |z — 20]/20 < 1), we have

z=20{1+ {2z — 20}/20} = 2.

Then, V can be approximated by V¢ éRm + T /z0. Equation
(3.3) is approximated by
u ~ Miju+ Vo + o(||z — zol])/ 20 (34)

where M, is a rotation matrix depending only on zg, and V
is a vector that also depends only on z. If we can prove

L ollz=zl) _

= 3.5
W ol — wol )

we can rewrite (3.4) by
u ~ Miju+ Vo + o(||u — uol]). (3.6)

To obtain (3.5), we assume that in a small neighborhood of =,
the depth of the surface z can be expressed as a continuously
differentiable function of image coordinate vector u:

z = f(u). €)
This implies that the viewing line is not tangential to the
surface at x( so that the surface does not degenerate into

a curve infinitesimally. Using (3.7), the 3-D point z on the
surface can be represented as a function of u:

u
z = f(u) [ 1] .
Therefore, z is continuously differentiable with respect to u.
According to the law of the mean, there exists a positive
number k& such that

Iz — @oll < kllu — uol|.

For all u in a sufficiently small neighborhood of uy, it follows

that
o(llz — Zoll) _ o(llz = Zoll) ll= — =o|
u—u zollu—uol =% ||z —zoll zollu — uoll
< ko oz = zol)
20 T-%o ||z — ol
=0.

This proves (3.5). Equation (3.6) concludes that the projec-
tion of a locally rigid 3-D motion onto the image plane can be
approximated by a locally rigid 2-D image plane motion in a
small neighborhood of any nonboundary point zo, provided 1)
change in depth due to the motion is small compared with the
original depth; 2) the rotation does not have large components
about the x and y axes; 3) surface depth variation in the small
neighborhood of g is small compared with the depth of zo; 4)
the surface can be represented by a continuously differentiable
function of image coordinates in a neighborhood of zy. Since
those conditions are usually fairly well satisfied within each
piece of smooth surface, we expect that the projection of
locally rigid motion of piecewise smooth scene surface can
be approximately represented by the piecewise locally rigid
image plane motions.

C. Motion-Insensitive Image Attributes

We have discussed the relationships between the 3-D piece-
wise locally rigid motion and image plane motion. Even
though the image plane motion can be generally approximated
by a piecewise locally rigid motion, the intensity of an
image is influenced by a series of factors in a complicated
way. For example, the measured intensity of an object point
varies due to changes in geometry between light sources and
objects (motion between the object and the light sources), in
geometry between objects and image sensors (motion between
the sensors and the object), in optical attenuation (e.g., lens
peripheral attenuation), and in photo-electrical sensitivity of
image sensors (e.g., inconsistency in CCD sensor array) [6],
[18], [28]. The factors related to the structure of image sensors
can be controlled in manufacturing or calibrated so that they
are well compensated for. However, the geometry among
lighting, objects, and image sensors cannot be completely
controlled in general. We must exclude specular or glossy
surfaces from consideration since a slight change in lighting
direction or viewing direction will significantly change the
apparent brightness of such surfaces. With extended lighting
sources, matte surfaces do not drastically change their apparent
brightness if slight changes in the geometry among lighting,
objects, and image sensors occur. Fine micro surface structures
of those surfaces constitute a macro structure that reflects light
relatively uniformly in all directions. For image matching in
this paper, we will only be concerned with these types of
surfaces. In other words, we assume the object surfaces are
such that the image intensity of object surfaces varies only
slightly between two images.

Let the corresponding image positions of a point in two im-
ages be u and ', respectively, and the corresponding intensity
be i(u) and ' (u'), respectively. The above assumption can be
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expressed by
(W) = i(u) + si(w)

where s;(u) is a small value.

We introduce image plane motion-invariant attributes. First,
we need to extend the domain of an image; an intended image
iis an element in S = {i | R?2 — B}. S is the set of all
possible infinite images. Let A = fg denote a product of two
mappings f and g: h(u) = f(g(u)). A 2-D rigid motion of
images is a mapping m : S — S such that m: = i,,, where
im(u) = i((Rou + T), Rs is a 2 x 2 rotation matrix, and T’
is a 2-D vector. Namely, the 2-D rigid motion m is a mapping
that maps an infinite image to another rotated and translated
image. Now, we are ready to define the planar rigid motion
invariant (PRMI) operator.

Definition 2: A PRMI operator g : S — S is a mapping
from S to S such that

gmi = mgt (3.8)

for all € S and all possible 2-D rigid motion m.

The PRMI operators are those operators with which the
mapping from a rigidly moved image is the same as that
resulting from moving the result of the mapping from the
original image. The attribute defined by a PRMI operator is
called a PRMI attribute. The PRMI attribute at the moved
point is equal to the attribute of the corresponding original
point. In other words, under an image plane rigid motion, the
matched points have the same value of the PRMI attribute.

Obviously, intensity is a PRMI attribute since g here is an
identity mapping, and (3.8) holds trivially. The edgeness and
cornerness defined in the following section are also PRMI
attributes.

D. Edgeness and Cornerness

To get a continuous measure of edgeness, we define edge-
ness as the magnitude of the gradient of intensity. Namely,
e = gi = ||Vi||, where g is the operator that maps i to e:

Ji(u)
Ou
Property 1: Edgeness defined in (3.9) is a PRMI attribute.

Proof: Given any intensity image : and any image plane
motion m, let gmz = ¢’. Then

e(u) = . 3.9

¢(u) = az(Rzg +Ts) _ 8;(1;) R
u v V=Ru+T
9
- ‘ :)(:) = e(v) lv=ryu+r,. (3.10)
V=R2U+T>

Equation (3.10) holds because R; is a rotation matrix. There-
fore, we get ¢’ = me, which gives gmi = ¢/ = me = mygi.
O

Various methods for detecting corners can be found in the
literature (e.g, [9], [19], [33]). Usually, a local polynomial
fit to image intensity is performed, and then, the corners are
detected based on the fitted polynomial. Since a polynomial
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fitting process is computationally expensive (e.g., a 7x 7 neigh-
borhood is needed) and the preprocessing discussed in Section
III-H considerably removes image noise, the polynomial fitting
is less desirable here. The cornerness at a point might be
defined by instantaneous rate of change in the direction of
gradient along an edge curve that passes through the point
[19], [33]. However, it has been reported that instantaneous
change performs more poorly than incremental change, which
is measured between the direction of gradients at two points
of intersection between a circle centered at the point and the
iso-intensity contour passing through the point.

There are some problems with these corner detectors. First,
the value of the directional change of gradient is thresholded
to select corners. Then, a change of 180° is more likely to
be selected than a change of 90°. However, the location of a
right angle corner is more reliable than a corner with an acute
angle or an obtuse angle. Second, cornerness measure should
include a sign to distinguish a corner of a black rectangle on
a white background from that of a white rectangle on a black
background.

We define the cornerness in the following way without using
computationally expensive polynomial fitting but achieving
very good performance on real-world images. As we men-
tioned earlier, we define positive and negative cornerness
separately. Roughly speaking, the edgeness at a point u
measures the changes of the direction of gradient at two
nearby points, weighted by the gradient at the point. These
two points u + r, and u + r, (see Fig. 8) are located on a
circle centered at u. The radius of the circle is determined by
the level of resolution. We choose r, and r; such that the
directional derivative along the circle reaches the minimum
and the maximum values, respectively (see Fig. 8). Let @ =
Vi(u+71,), b = Vi(u + r;), and angle (a,b) be the angle
from a to b measured in radians counterclockwise, ranging
from —7 to 7. The closer the angle is to m/2, the higher
the positive cornerness measure should be. In addition, the
measure should be weighted by the magnitude of gradient
at the point u. Mathematically, the positive cornerness and
negative cornerness are defined, respectively, by

p(w) =
{g(u){l — |1 — angle (a,d) - {2/7}|} O < angle (a,b) <7

otherwise
(3.11)
and
n(u) =
{e(u){l — |1 + angle (a,b) - {2/7}|} -7 <angle(a,b) <0
0 otherwise

(3.12)

where column vectors a and b are intensity gradients at u+r,,
and u + r;, respectively:

o _ i)
95 |s_usr,
bt = 9ils)
98 |s_uir,
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r+Vi(u+r)

a=Vi(u+r)
3 b =Vi(u+ry

Fig. 8. Definition of cornerness (see text).

where ||r,|| = ||rsl| = 7, ro and ry, are such that
oi oi
i(v) ot = min 20 b (3.13)
O |y _uor, Irli=r 0V |y_yir
and
Py .
i(v) ri = max __31,(1)) vt (3.14)
ov v=u+r, lrf=r Ov v=u+r

The superscript L denotes the corresponding perpendicular
vector; if r = (ry,7,)T, then r+ = (=ry,7,)T. If r, and 7,
that reach the minimum in (3.13) and the maximum in (3.14),
respectively, are not unique, choose those that minimize p(u)
in (3.11) and (3.12) in addition to satisfying (3.13) and (3.14).
The value 7 is a parameter of cornerness and is directly related
to image resolution. In the discrete version, r is equal to the
pixel size.

Property 2: The positive cornerness and negative corner-
ness defined above are PRMI attributes.

Proof: See Appendix.

From the definition of edgeness and cornerness, it can be
seen that the edgeness and cornerness of a point are defined
in a small neighborhood around the point. For a digital image,
the neighborhood involves just nearby 3 x 3 pixels in our
implementation. Therefore, as long as the motion does not
exhibit considerable nonrigidity in the small window centered
at a point, the attributes are approximately motion invariant.
The relationships between the 3-D motion and image plane
motion discussed in Section III-B indicate that a 3-D locally
rigid motion results in a locally rigid 2-D image plane motion
under some regularity conditions. Although the locally rigid
motion is not a necessary condition for the approach to image
matching discussed here (we only need the validity of the
similarity of attributes), the study of locally rigid motion, its
relationships to image plane motion, and the plane motion
invariance of the attributes leads to a class of motion for which
similarity of attributes is approximately true.

E. Smoothness

Smoothness constraints impose similarity of the displace-
ment vectors over a neighborhood. In addition to considering
the smoothness of the overall displacement vectors, we sep-
arately consider the smoothness of the orientation of these
vectors. The reason for emphasizing orientation smoothness
is that 1) the orientation of the displacement vectors pro-
jected from a coarse level is generally more reliable than
their magnitude, and 2) at a fine level, the local attribute
gradient perpendicular to the displacement vector can easily
lead the displacement vector toward the wrong direction if the
orientational smoothness is not emphasized.

We represent the displacement vector field in the vicinity of
a point ug by a vector d(ug). It is intended to approximate the
displacement field within the region to which uy belongs. In
the implementation, d(up) is computed as

(o) = / /0 ., i) i), )~ )

(3.15)
where 0 < |lu — ug|| < r denotes a region around uo, and
w(-,-) is a weight. In digital implementation, the integration
is replaced by a summation over ug’s eight neighboring pixels.
The weight is a function of intensity difference 7(u) — #(uo)
and displacement vector difference d(u)—d(uo). The objective
that d(uo) represents the neighboring displacement vectors of
the region of u suggests the following requirements on the
weight.

1. The weight is large if the intensity difference is small.
We assume that the small intensity difference is observed
when two neighboring points u and ug belong to the
same region, and therefore, their displacement vectors
should be similar.

2. If u and 5o have similar intensity but the corresponding
displacement vectors are different, the weight should still
be large. This case occurs when the displacement field
is projected from a coarse level to the finer level. Two
adjacent points with the same intensity may take quite
different initial displacement vectors if they belong to
different grid points at the coarse level.

3. If u and uo have different intensities and their displace-
ment vectors are very different, the weight should be
extremely small to suppress the influence of u on d(uy).

Let n; = |i(u) —i(uo)| and g = d(u) —d(uo). A definition

of weight that satisfies the above criteria is as follows:

c

TR Tgl®) (3.16)

w(ni,ng) =

~where ¢ is a small positive number to reduce the effects of

noise in intensity and prevent the denominator from becoming
0, and c is a normalization constant that makes the integration
of weights equal to 1:

// w(i(u)—i(ug), d(u)—d(ug))du = 1. (3.17)
0<||u—to||<r

To ensure that requirement 2) is met, a small scale factor can
be applied to the term [[ngl|%, or alternatively, it can be set to
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zero, which gives a simpler form:

w(ni, mg) = (3.18)

c
e+ |mi|
When the displacement field is computed with a computed
occlusion map, the weights in (3.16) and (3.17) should be
modified if, in (3.15), ug is not an occluded point but u is.
In this case, the weight corresponding to the occluded point
u should be zero w = 0 since u_l(uo) should not take the
meaningless d(u) into account. If ug is an occluded point,
the weight need not be set to zero no matter whether u is
an occluded point or not since the displacement vector at an
occluded point is arbitrary and thus may conveniently take the
value of such a d(ug).

Thus, the weight is automatically determined based on
the intensity difference and the displacement difference. The
smoothness constraint imposes similarity of d(10) and d(uy).
The larger the difference in intensity, the more easily the
fields for two adjacent regions can differ. If two regions get
different displacements after some iterations, the quadratic
term |jng|? results in a very small weight to reduce their
interactions. On the other hand, the displacement vectors in
the same region will be similar since the corresponding weight
is large. Since intensity difference is usually much larger than
the magnitude of displacement difference, |7;| is not squared in
(3.16) (unlike 74); otherwise, the weight will be too sensitive
to small changes in intensity. The weights thus implicitly take
into account discontinuities and occlusions. The registered
value d(ug) allows us to perform matching using uniform
numerical optimization despite the presence of discontinuities
and occlusions. This is discused below.

F. Minimizing Residuals

Any given displacement vector field leads to measures
of similarity, or residual errors, between the attributes of
estimated corresponding points. The residual of intensity is
defined by

ri(u,d) = ' (u + d) — i(u).

Similarly, we define the residual of edgeness r.(u, d), that of
positive cornerness 7,(u,d), and that of negative cornerness
T (u,d). The residual of orientation smoothness is defined by

ro(tyd) = () x d(w)] / (w)|

where (a,b)z(c, d) = ac—bd and the residual of displacement
smoothness by
ra(u,d) = ||d(w) - d(u)]|.

Under the conditions we discussed above, the similarity of
attributes approximately holds. Therefore, we determine the
displacement vector d such that the weighted sum of squares
of residuals is minimized:

m‘in Z{rf(u, d) + AerZ(u,d) + A\pr2(u,d)
u

+ At (u,d) + Aor2(u,d) + /\drg(u,d)}
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where 7., 7,,75,70, and 74 are weighting parameters that are
dynamically adjusted at different resolutions. Let
JAY T

T=(T4,Tey Tps Tns Toy Td) - (3.19)
With the previous estimate of the displacement vector d
(initially, d is a zero vector at the highest level), we need
to find increment 64. Expanding r(u,d + §g) at 63 = 0, we
have (suppressing variable u for conciseness)

31‘ d A
r(d+59) = r(d) + 2854 ofl6gl)2r + Tog +olls)
(3.20)
where
- 8 8’ -
Ou v
e’ e’
Qu gy
or(d) 2 oy
7= | on'
od _Ou _ _ Ov_
~d, /i du/id)
1 0
L 0 1

where (d_u, Jv)T =d, and the partial derivative g—i denotes the
partial derivative of '(u, v) with respect to u at point u + d,
and so on. Define

A = dzag(l, Ae, Ap, )\ny )\07 )\d)

We need to solve for 64 such that the sum of squared residuals
is minimized. Neglecting high-order terms and minimizing
lA(r+J84)I|?, from (3.19), we get the formula for updating d:

6qg = —(JTA2T) " T A%r(u). (3:21)

The partial derivatives in the entries of J are computed
by a finite difference method in our implementation. Let s
denote the distance between two adjacent points on a grid,
along which the finite deference of the attributes is to be
computed, assuming a unit spacing between adjacent pixels.
Then, s should vary with the resolution. In addition, s should
also vary with successive iterations within a resolution level.
A large spacing is necessary for a rough displacement estimate
when iterations start at each level. As iterations progress, the
accuracy of the displacement field increases and s should
be reduced to measure local structure more accurately. The
mask to compute finite differences is shown in Fig. 9, where
spacing s at level [ is equal to 2! for the first one half number
of iterations at level [ and is reduced by a factor of 2 for
the second half, except for [ = 0. At the original resolution
(I = 0), the spacing is always equal to 1 since no smaller
spacing is available on the pixel grid.

For each grid point, the displacement vector d is replaced
by d + 84 according to (3.21). An iteration consists of such
an updating for every grid point. At each resolution level, a
fixed number of iterations (e.g., 20) are performed before the
displacement field along the grid is projected to the next finer
level. The final displacement field is obtained at the original
image resolution.
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1] [e] [
e [2] [o] [2]
(] [ [

s>l

Fig. 9. Mask for computing derivatives.

G. Recursive Blurring

As shown in Fig. 7, the images need to be blurred to
higher levels. The original images are first preprocessed by
the methods to be discussed in Section III-H. Then, four at-
tribute image pairs are generated (intensity, edgeness, positive
cornerness, and negative cornerness). The attribute images are
extended in four directions to provide context for the points
that are near the image border. The extension is made by
repeating the border row or column. We use recursive blurring
(to be specified below) to speed up computation. Only integer
summations and a few integer divisions are needed to perform
such a simple blurring. The blurring of level [ 4 1 is done
using the corresponding attribute image at level [. For each
pixel at level [ + 1, its value is equal to the sum of the value
of four pixels at level ! divided by k& (k¢ = 4 for intensity,
k = 3 for edgeness, and k& = 2 for cornerness). The locations
of these four pixels are such that each is centered at a quadrant
of a square of a x a (see Fig. 10). a is equal to 2' at level /.
Therefore, the blurred intensity image at level [ is equal to the
average over all pixels in a square of size a X a. To enhance
sparse edges and corners, k is smaller than 4 for edgeness and
cornerness. Therefore, the results can be larger than 255. If this
occurs, the resulting value is limited to 255. This multilevel
recursive normalization is useful for the algorithm to adapt to
different scenes.

H. Preprocessing, Normalization, and Parameter Selection

The matching algorithm has to cope with images of a wide
variety of scenes. The purposes of preprocessing are 1) to
normalize the images so that the algorithm can use a set of
standard parameters for different scenes and 2) to filter out
noise in the images.

The pair of intensity images to be matched is first normal-
ized by a linear function so that the maximum and minimum
intensities are equal to 255 and 0, respectively. (This range
from O to 255 is to adapt to the hardware representation we
used.) Then, it is filtered with a small (3 by 3) low-pass filter
to suppress gray-level noise.

Similarly, the edgeness and the cornerness also need to
be normalized. The following considerations motivate the
normalization. First, small gradients are more susceptible to
intensity noise and are not reliable. Second, strong gradients
may excessively override other moderate gradients in edgeness
measurement. Third, different scenes have different ranges of
gradient magnitude, and the algorithm should treat them in a
systematic way. Therefore, we slightly modify the definition of
edgeness presented in (3.9). Edgeness is the magnitude of the
gradient, normalized, and transformed by a function f shown

o i

Fig. 10. Recursive blurring and limiting (see text).

fix)
255
’ T T T » x
0 X9 X1 255
fix)
255
™ ! T T » x
0 Xg Xy 255
Fig. 11. Two normalization functions.
in Fig. 11:

e(u) = f([[Vi(w)]])-

The function f maps the magnitude of gradient onto the
whole range [0, 255]. It has two transition points zp and
z1. From 2 = 0 to = z¢, f(z) = 0 to suppress noise.
From z = zo to ¢ = 1, f(x) increases from ~ 0 to =~ 255
gradually and smoothly. The smooth transition interval [zg, z1]
allows continuous variation of edgeness for the gradient with
a moderate magnitude. For z > z1, f(z) & 255 to limit strong
edges and relatively enhance moderate edges. The values of
two transition points z and x; are determined automatically
through an analysis of the histogram of gradient magnitudes
such that the fractions of the pixels in edgeness images that
have values below f(xg) and above f(z;) are maintained at
predetermined levels.

The edgeness e(u) used in the definition of cornerness (3.11)
and (3.12) should also use the modified definition (3.22) as
well. Note that such modified edgeness and cornerness are
still PRMI attributes, and all the related proofs still hold if ¢
is replaced by fg.

The preprocessing and normalization steps make the al-
gorithm perform consistently for a wide variety of images
using a set of standard parameters that are selected based
on a moderate number of image examples. At the present

(3.22)
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implementation, the parameters are determined through trials.
A set of parameters (e.g, those in (3.16) or (3.17) and (3.18))
are determined for each level of resolution. At coarse levels,
the edgeness, cornerness, and smoothness have relatively large
weights. Their weights are reduced gradually down to finer
levels since the smoothness constraint should be reduced at
finer levels, where details of the displacement are obtained,
and the cornerness and edgeness measurements at finer levels
are more susceptible to noise than the significantly blurred
measurements.

I. Outline of the Matching Algorithm

The following summarizes the steps of the procedure that
computes the displacement field from one image to the other
(see Fig. 7):

1. Filter two images using a 3 x 3 low-pass filter to remove

noise (Section III-H).

2. Normalize the pair of images (Section III-H).

3. Generate attribute images: intensity, edgeness, positive
cornerness, and negative cornerness (Section III-D).

4. Set the level to the highest, e.g., [ = 6, and set the
displacement field on the grid (level 6) to zero.

5. Blur attribute images to level [ (Section III-G).

6. Compute the displacement field along the grid (Section
III-F). Perform a number of iterations (e.g., 20).

7. If | = 0, the procedure returns with the resulting
displacement field; otherwise, go to 8.

8. Project the displacement field on the grid of level [ to
the grid of level [ — 1 (copying the vector at each grid
point to the four corresponding grid points of level [—1);
decrement [ by 1 and go to 5.

Suppose we need to determine the displacement field from
image 1 to image 2. In order to first obtain occlusion map 1,
first compute the displacement field from image 2 to image
1 using the above procedure without occlusion information
(assuming image 2 has no occluded region). The displacement
field computed is used to determine the occlusion map 1
for image 1 as discussed in Section II-C (see Fig. 6). In
the implementation, the occlusion maps are filtered by 3x
3 median filters to remove single pixel wide occlusion and
noise. Then, the displacement field from image 1 to image 2
is computed using the occlusion map 1 by calling the above
procedure starting from step 4. In step 6, if a point in image
1 is marked in the occlusion map 1, it is not visible in
image 2, and therefore, the displacement vector from this point
cannot be determined. We simply copy the vector d to this
occluded point. The final computed displacement field assigns
a displacement vector to every pixel in image 1.

IV. REFINEMENTS

The computational structure illustrated in Fig. 7 can be
extended further in order to improve the computed displace-
ment field. This section discusses two techniques that we have
implemented: 1) refinement through a bottom-up and top-down
computational scheme and 2) refinement using the rigidity
constraint.

N

level 5
level 4
level 3
level 2
level 1

level 0

Fig. 12. Bottom-up and top-down refinement.

A. Bottom-Up and Top-Down

The data flow characterized by the projections shown in Fig.
7 is of a top-down fashion in the sense that the displacement
fields are computed from high levels (coarse resolution) down
to low levels. At high levels, coarse estimates of the field
are computed to cope with large disparities. At low levels,
details of the displacement fields are computed. However, at a
coarse level, different initial estimates may result in different
results. The more accurate the initial estimate is, generally,
the more accurate the final result will be. Since the result
of a lower level is generally more accurate than that of a
higher level, the result of a lower level can be used as an
initial estimate for a higher level. We may also observe this
issue in a slightly different way: The result of a coarse level
needs to be verified and refined at low level, where a more
detailed image is available. Such a refined local field needs to
be propagated to wider areas. One computationally efficient
way to do this is to go up to the higher levels where a coarse
grid is available. These considerations motivate the bottom-
up scheme—the result of a lower level is projected back to a
higher level as an initial estimate. The upward projection is
done as follows: The initial value of the grid point at a higher
level is the average of the values of the corresponding grid
points at the lower level. Then, another pass of computation is
performed from the higher level to the lower level, at which a
refined field is obtained. A multiple of such top-down, bottom-
up structures can be embedded in the entire algorithm. Fig. 12
shows an example of the computational structure that we have
implemented, which leads to a tangible improvement for some
images over a straight top-down scheme.

B. Refinement Based on Rigidity

Mathematically, the displacement field is equivalent to point
correspondences between two images. If the scene is rigid,
the algorithm that computes the motion parameters and the
structure of the rigid scene can be used to determine the motion
between two images and the surface of the scene (since we
have a very dense displacement field).

All displacement vectors should satisfy the rigidity condi-
tion, i.e., they describe a rigid motion. Due to noise, this is
generally not true. Since the motion parameters are estimated
from a large number of displacement vectors based on some
optimality criteria, they are generally more reliable than an
individual displacement vector. Each displacement vector can
be modified based on the estimated motion parameters. Since
we determine displacement on a fixed grid, the starting image
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Fig. 13. Two views of a laboratory scene (called the Mac scene).

coordinates of each displacement vector are fixed. To satisfy
the rigidity condition, we move the estimated structure at the
viewpoint at the first image (sampled on the pixel grid) using
the estimated motion parameters to the new position. Then,
the projection of the structure at the new position determines
the new displacement field. Then, the resulting displacement
field exactly satisfies the rigidity constraint.

V. EXPERIMENTAL RESULTS

Experiments have been conducted on a variety of real-world
scenes. A CCD monochrome video camera with roughly 512
x 512 pixels was used as an image sensor. The focal length
of the camera was calibrated, but no correction has been made
for the camera nonlinearity. The camera took two images at
different positions for each scene. The number of resolution
levels used for experiments is equal to 7. Twenty iterations
are performed at each level. The matching results shown here
have not been refined by the method discussed in Section IV.

First, we present the results for the pair of images shown
in Fig. 13, which is called the Mac scene. Significant depth
discontinuities occur in the scene. Books and manuals lie
irregularly on the table. Such a surface is very difficult to

Fig. 14. Edgeness of the first image of the Mac scene.

Fig. 15. Positive cornerness of the first image of the Mac scene.

estimate accurately from sparse depth data. With this pair of
512 x 512 images, the largest disparity is about 80 pixels.
The edgeness image is shown in Fig. 14, and the positive
and negative cornerness images are shown in Figs. 15 and
16, respectively. The blurred attribute images at the highest
level (I = 6) and the next finer level (I = 5) are shown in
Fig. 17. It can be seen that the corresponding blurred attribute
images are quite different. Although all the attribute images
are derived from the original intensity images, different at-
tribute images characterize different properties of the intensity
images, and they show drastically different attribute images.
Such a difference among different attribute images is what
we need to provide an overdetermined system of matching
criteria. At the coarsest level, the grid on which displacement
is to be computed is very sparse (8 x 8 at [ = 6), and it is also
the grid on which the finite differences are computed in the
first 10 iterations. The samples of the computed displacement
field along the grid are presented at different levels and
superimposed on the corresponding blurred intensity images
of image 1, which have been extended to provide context for
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Fig. 16. Negative cornerness of the first image of the Mac scene.

Fig. 17.
first row: blurred intensity image pair; right pair in the first row: blurred
edgeness image pair; left pair in the second row: blurred positive cornerness
image pair; right pair in the second row: blurred negative cornerness image
pair; lower two rows: level 5 in the same arrangement as the upper two rows.

Blurred attribute images. Upper two rows: level 6; left pair in the

the borders. The computed displacement fields are shown in
Fig. 18 at level 6 and in Fig. 19 at level 5. At levels lower
than 5, the grid for the displacement field is too dense to
display the field completely. Instead, only samples along a
sparse 16 x 16 grid are shown for lower levels. Fig. 20 shows
the sample of the displacement field at level 4. The samples of
the displacement field at level 1 is shown in Fig. 21. Examing
by flickering between two images on a Sun workstation, 95%
of the vectors shown in Fig. 21 appear to have no visible errors.
Between the top of the Macintosh computer in the foreground
and the central workstation is a dark region corresponding to
the wall. Due to drastic depth changes across this region and
absence of texture inside the region, this region appears to
undergo a deformation. The resulting displacement vectors in
this region are consistent with the deforming interpretation,
which is not physically correct. A correct solution to the
displacement field in this region may require greater resolution

Fig. 18. Computed displacement field at level 6 for the Mac scene, super-
imposed on the blurred extended intensity image. (The intensity image is
extended in four directions to provide context for the border areas.)

Computed displacement field at level 5 for the Mac scene, super-
imposed on the blurred extended intensity image.

Fig. 20. Samples of the computed displacement field at level 4 for the Mac
scene, superimposed on the blurred extended intensity image.
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Fig. 21. Samples of the computed displacement field at level 1 for the Mac

scene, superimposed on the blurred extended intensity image.

Fig. 22. Computed occlusion map 1 for the Mac scene. Black areas in
occlusion map 1 indicate that the corresponding areas in image 1 (the first
image in Fig. 13) are not visible in image 2 (the second image in Fig. 13).

and brighter lighting in order to pick up the fine texture on the
wall. The occlusion map 1 is shown in Fig. 22, where black
areas indicate that the corresponding areas in image 1 (the
first image in Fig. 13) are not visible in image 2 (the second
image in Fig. 13). The occlusion map is to show relatively
large occluded regions (more than one pixel wide) instead of
occlusion boundaries that can be easily detected by analyzing
discontinuities in the constructed depth map.

Since the scene is rigid in this case, the algorithms presented
in [30] and [32] were employed to compute the motion
parameters and the 3-D structure of the scene from the
computed displacement field. The reconstructed 3-D surface
is shown with the value of 1/(z), where z is the depth
as an intensity image in Fig. 23, and is plotted in Fig.
24. Those surfaces agree fairly well with those observed in
the real scene. It is worth mentioning that the complicated
surfaces of the manuals and books on the front table have
been recovered. The parameters of the motion of the scene

Fig. 23. Computed 3-D surface (1/=) shown as intensity image for the Mac

scene (from the viewpoint used for image 1).

Fig. 24. Perspective plot of computed 3-D surface (1/=) for the Mac scene
(from the viewpoint used for image 1).

relative to the camera are shown in Table 1. The translation
direction and rotation axis are represented by three components
(up, right, forward). Because the ground truth of the camera
motion was not available (obtaining ground truth requires
extensive calibrations), we were not able to determine the
actual accuracy of those motion parameters. However, we
can measure the discrepancies between the projection of the
recovered 3-D position of the scene points and the actual
observed projection. Let us define the image error as

n

S +dl)/(2n)

i=1

image error =

where n is the number of points in each image (number
of displacement vectors), d; is the distance between the
projection of the computed 3-D point i and its observed
projection on image 1, and d is the analogous distance
for image 2. Remember that the computed 3-D positions of
the points at two time instances exactly satisfy the rigidity
constraint. If the displacement field is not correct and does
not correspond to the motion of a rigid scene, the image
error will be large, no matter how good the performance
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TABLE I
DATA AND RESULTS FOR THE MAC SCENE

Parameters x (upward) y (rightward) = (forward)

Translation 0.016 0.991 0.133
Rotation axis 0.966 0.176 —0.188
Rotation angle 1.61°

image error 0.00033

Pixel width 0.00094

23

Fig. 25. Performance using only intensity: The computed 3-D surface (1/z)
shown as intensity image for the Mac scene (from the viewpoint used for
image 1).

of the motion and structure estimation algorithm is. On the
other hand, if the errors in the displacement field do not
violate the rigidity constraint, the image error can still be
small provided the performance of the motion and structure
estimation algorithm is good. As shown in Table I, the image
error is within half of the pixel width. Thus, the performance
of the algorithm for motion and structure estimation is good,
and the matching algorithm at least does not make large errors
that violate the rigidity constraint. The displacement field could
still conceivably make systematic errors to depict a rigid scene
different from the real one, but such systematic errors are
unlikely except those caused by the existence of multiple
interpretations. A quantitative estimation for the accuracy of
the motion parameters based on the image errors is presented
in [32].

In order to compare our algorithm with one that uses only
intensity gradients, we set the the weights for edgeness and
cornerness, A., A, and A,, to zeroes. The depth from the
resulting matching is shown in Fig. 25, which can be seen
to contain many errors. The result without using the occlusion
map is shown in Fig. 26, from which we can see that severe
errors occur around the occluded regions.

Two images of another scene (called the Desk scene) are
shown in Fig. 27. The samples of the computed displacement
field are presented in Fig. 28, and the estimated motion
parameters are given in Table 2. The resulting 3-D surface
is shown with value 1/z as intensity image in Fig. 29.

Fig. 30 gives two images of one more scene (called the Path

Fig. 26. Performance without identifying occluded regions: The computed
3-D surface (1/z) shown as intensity image for the Mac scene (from the

viewpoint used for image 1).

Fig. 27. Two images of the Desk scene.

scene), and the samples of the computed displacement field
are presented in Fig. 31. The results of motion estimation are
shown in Table III.
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Fig. 28. Samples of the computed displacement field at level 1 for the Desk

scene, superimposed on the blurred extended intensity image.

TABLE 11
DATA AND RESULTS FOR THE DESK SCENE

Parameters a (upward) y (rightward) = (forward)

Translation —0.045 0.943 -0.329
Rotation axis —0.872 0.385 0.303
Rotation angle —1.35°

Image error 0.00051

Pixel width 0.00094

Fig. 29. Computed 3-D surface (1/z) shown as intensity image for the Desk
scene (from the viewpoint used for image 1).

VI. SUMMARY AND DISCUSSION

We have presented in this paper an approach to computing
the displacement field between two images of a scene taken
from different view points. The approach employs multiple
attributes of the images to yield an overdetermined system of
matching constraints. The continuities and discontinuities in
the displacement field and occlusion are taken into account
to analyze complicated real-world scenes. This approach is
capable of dealing with large disparities.

Fig. 30. Two images of the Path scene.

Fig. 31.

Samples of the computed displacement field at level 1 for the Path
scene, superimposed on the blurred extended intensity image.

In the current implementation of the algorithm, intensity,
edgeness, and cornerness are used as matching attributes.
Those attributes are invariant under image plane rigid motion.
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TABLE III
DATA AND RESULTS FOR THE PATH SCENE

Parameters & (upward) y (rightward) = (forward)

Translation 0.095 —0.057 0.994
Rotation axis 0.709 0.407 0.576
Rotation angle 0.13°

Image error 0.00032

Pixel width 0.00094

Locally rigid motion is introduced, and its relationships with
image plane motion motivate the use of image plane (rigid)
motion-invariant attributes for matching. Since the edgeness
and cornerness attributes are low-level attributes defined in a
very small neighborhood around a point (specifically a 3 x 3-
pixel neighborhood), the attributes are insensitive to those
motions that do not exhibit significant deformation in the small
neighborhood.

The matching algorithm does not require extensively tex-
tured images. From the matches obtained, dense 3-D surface
and occlusion maps are computed for real-world scenes. The
discrepancy between the projection of the computed 3-D points
and the observed image points (image error) is about one half
of the pixel width.

In order to relate the presented algorithm with others, let
us first make some observations about the role of J given in
(3.20). The top four rows of J determine the matching, and the
bottom three rows account for the intraregional smoothness.
At a point of image 7’(u), where there are strong transitions
of intensity, edgeness, and cornerness, or a subset of them,
the first four rows of J are relatively strong and determine
the optimal §4 to update the displacement vector. The bottom
three rows are relatively weak, and they are used to adjust
the intraregional uniformity of the field in the neighborhood.
At a point where the intensity, edgeness, and cornerness are
flat, the top four rows of J are weak, and the three bottom
rows play a major role. The displacement is updated such that
it is consistent with the neighboring displacement vector of
the same region. The resulting effect is extrapolating across a
uniform region. The first four linear equations of
or(d)

ad
yield four linear equations in terms of two components of
84> which determine four lines in the space of b4- Since the
measurements are relatively noisy, those lines are not very
reliable and generally do not intersect at a single point. A
weighted least squares solution of (6.1) determines a point
that minimizes the weighted sums of squared residuals.

Existing gradient-based methods use only one linear equa-
tion based on intensity similarity. Namely, only the first of
the four lines is used. This line does not determine a point in
the plane (an underdetermined system). Those methods resort
to some smoothness constraints. However, many incorrect
solutions that satisfy the intensity constraint can also be very
smooth and very often can be even smoother than the correct
solution. In other words, there is a huge class of solutions
that satisfy, numerically, both the linear equation and the
smoothness constraint but may be very different from the

r(d+6g) =r(d)+ 6g=0 (6.1)

correct solution. The final solution obtained by those (usually
iterative) methods can be any one in this class. Therefore.
those methods do not give the correct solution in general.

In our approach, the system is generally overdetermined,
and smoothness is used mainly for filling in uniform regions.
Although the available information for matching is just the
original intensity images, the matching criteria here are based
on not only individual intensity values but also on the relation-
ships between those intensity values. Edgeness and cornerness
characterize some meaningful local relationships at a point,
and they are approximately invariant under locally rigid im-
age plane displacement. These attributes provide additional
information that is needed to guide the matching. At a coarse
level, they provide texture content of the original images.
More importantly, they lead to a generally overdetermined
system based solely on attribute matching instead of regular-
ization (smoothness). Such an overdetermination significantly
improves the stability of the solution.

Computationally, since the intensity, edgeness, and corner-
ness used in our algorithm are point-based local properties,
the algorithm is pixel oriented: simple, uniform, and easy
to implement on certain parallel computer architectures. This
is an advantage over symbolic discrete matching approaches
that use high-level discrete primitives and provide only sparse
matches.

Some questions could be raised about the difference be-
tween the multiattribute scheme discussed here and one using
spatiotemporal Gabor filters [13]. In fact, the framework
presented here differs from that of the Gabor energy-based
method in several fundamental ways. First, the Gabor energy
is not rotationally invariant, and therefore, it is not a PRMI
attribute. Second, the spatiotemporal method is meant for small
displacements and is not suited for the task of matching with
large interframe disparities. Third, the computational scheme
used here is based on exact matching, whereas that of Gabor
filters is based on prediction in the sense that the predicted
energies and the velocities are exact if the pattern has a flat
spectrum. (The normalization of each spatial orientation may
alleviate, to some degree, the problem with local patterns that
do not have a flat spectrum).

APPENDIX

Property 2: The positive cornerness and negative corner-
ness defined are PRMI attributes.

Proof. Let p = gi, where g is the operator that maps i
to p, which is the positive cornerness image. For convenience,
denote the moved image mi by 4, 4, = mi, and the edgeness
image of i,, by e,. We need to prove gmi = mgi, or
equivalently using the above notation, gi,, = mp. According
to the definition of the positive cornerness, we have

g im(u) =
{em('u.){l — |1 — angle(a,b){2/7}|} 0 < angle(a,b) <=
0 otherwise
(A1)
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where a and b are intensity gradients at u + r, and u + 1y,
respectively:

al = Fim(3)
98 |s_uir,
bT — 31/771 (8)
95 |s_uir,
where ||r.|| = ||Irs|l = 7, and r, and r, are such that
Fim(v) 1 9i(v) .
P T, = ”1'1‘1”1:]-11. 90 T (A2)
v=u4r, v=u+r
and
Bim(v) . i(v) .
= -r-. (A3
v o = A2 0w A3
v=u+t, v=u+r
Since the edgeness is a PRMI attribute, we have
em(4) = e(V)ly_p,urr, (A4

where R and T, represent the image plane motion m. Let
r;éRzra, rf,éRzrb, b2 Ryb, and 2 R,r. According to the
definition of the function angle, we have )

angle (a,b) = angle (a',b). (A5)

From (A.4) and (A.5), we can rewrite (A.1) as the equation
at the bottom of the page: Next, we need to derive the
relationships among a’, b’, and the image i. Since i,(s) =
i(R2s8 + T2), we have

Aim(8) .
Os -
S=u+r,
81}5 (v) Ro _
v U=Rz(U+r.)+T2
Bim(v)
g (A7)
U=Rou+Ty+7",
or
di(v)
(@) = (A8)
a(v) VU=Ryu4T>+4r)
Similarly
wf—m@ (A.9)

~ 9(w)

‘l)=R2u+T7+r")
From (A.7), it follows that
Oim (V)

—_ 7 r

ov

ok

V=U+T,

al(‘”) . RzT’L —
ov e
V=R U+ T2 +T,
31(‘0) sy L
6‘!} " (ra) *
_ V=Ryu+T2+T",
Therefore, (A.2) and (A.3) lead to
di(v) NS
Ov () =
V=R U~+T2+T),
di(v) Nl
min - (r A.10
i 5y (r') (A.10)
V=Ryu+Ty=7'
and
9i(v) N
ov (n)" =
V=R, U+ T2 +T),
8i(v) L
r All
Irj=r Ov =) (a1D)

V=Rzu+T2+7"'

From (A.6) and (A.8)—(A.11) and the definition of the positive
cornerness, it follows that

gim(u) = p(")|v=R2u+T2
or, in terms of operators, g¢,, = mp. An analogous proof leads
to the corresponding conclusion for the negative cornerness.(]
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