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Abstract — In segmenting an image by pixel classification, the sequence of gray levels of the pixel’s neighbors
can be used as a feature vector, This yields classifications at least as good as those obtained using other local
properties (e.g., averages or values of difference operators) as features.

Image Segmentation Pixel classification

1. INTRODUCTION

This paper describes the application of a supervised
classification technique for image segmentation which
explicitly uses a pixel’s neighborhood information,
There is, of course, an abundance of previous research
in this area — e.g.,, for multispectral image classific-
ation,' FLIR image analysis,’®> and general image
segmentation, ' * to list just a few. The experiments
described here differ from those of previous investi-
gationsin that they indicate the superiority of using the
pattern of gray levels in the neighbourhood of a point,
rather than features computed over these
neighbourhoods.

2. SUPERVISED IMAGE SEGMENTATION

In this section we will discuss the application of
minimum mean squared error procedures to segmen-
tation using neighborhood grey tone information. Let
I be an m x mimage and let X, ; be a feature vector of
length a associated with pixel I(i, ). X; ;may consist of,
for example, the gray level of I(i, j) and the average gray
levels of the 3 x 3and 5 x 5 neighborhoods surround-
ing I(i,j). In the experiments described here, X; ;is a
vector defined by the gray levels in a k x k neigh-
borhood of I(i,j). The organization of X; ; will be
discussed later.

Now, suppose that I has been segmented and that
each pixel is labeled with an integer representing the
segment to which it belongs. Suppose there are r
classes labeled with the integers L = {/,...1.}. Let

* Reprint requests to Dr. Haralick.
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and let w = [w, ... w,]". The w that minimizes Yw — ¢
is then (Y'Y)™! Y'c**). In the two-class case (r = 2) if
we take [, = — 1 and [, = 1 then the mean squared
error solution approaches a minimum mean squared
error approximation to the Bayes discriminant func-
tion. If, from the m x n samples, n, are from class 1
and n, are from class 2, then choosing
¢ =[m x nfn;, —m x nfn, ]’ results in the Fisher li-
near discriminant ).

The weight vector w is used to classify pixels by
computing X! w, where X, is the feature vector of the
pixel. If X!w > 0 then the pixel is assigned to class 2 (in
the two-class case); otherwise it is assigned to class 1.

In the first set of experiments discussed below, two
choices of X; were investigated:

(1) the average gray levelsof5 x 5,3 x 3and1 x 1
neighborhoods of a point, and

(2) the individual gray levels in a k x k neigh-
borhood of a point.

In the second case, one would suppose that the
arrangement of the gray levels in the vector X should
be important. For example, suppose that X; were
constructed by a raster scan of the k x k neighborhood
of a point, and that one of the classes in our training set
is composed of gray level patterns that have strong
directional properties. Then if subsequent images
contain objects in this class in different orientations
from those of the training image, we would expect the
classification results to be poor for those objects.

One possible solution to this problem is to construct
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(c) (d)

Fig. 4. Analogous to Fig. 3, using as [eatures the 9 gray levelsina 3 x 3 neighborhood of each point.

14T 31T
THR WEIGHT = 2.76 THR WEIGHT = 12.68
-011 —-000 -001 005 -0.14 —0.00 008 001 000 —0.10
—-000 006 005 010 010 008 0.13 002 009 -0.04
002 009 018 003 002 003 005 025 007  0.00
002 004 004 —-000 004 002 0.16 008 015 006
—-0.08 —0.01 0.01 002 -0.11 —0.11 003 001 002 -013
28T 33T
THR WEIGHT = MISSED THR WEIGHT = -3.19
-0.03 0.01 000 -0.02 -005 005 001 0.04 004 -0.00
0.04 0.9 0.03 0.09 0.01 001 006 001 0.3 0.00
006 013 0.32 0.05 0.07 000 002 009 005 —0.00
0.01 014 007 0.16  0.07 055 006 006 008 —0.05
—0.14 -005 -005 -000 -0.07 000 003 —-000 004 —005

Fig. 5. Weight matrices for the 25 features used in Fig. 3.

14T 31T
THR WEIGHT = 2.52 THR WEIGHT = —12.30
—-0.03 0.04 0.05 0.16 0.04 005
0.10 0.21 0.10 0.10 024 0.10
—002 002 -0.04 0.10 007 0.10
28T 33T
THR WEIGHT = 11.49 THR WEIGHT = —2.04
0.10 005 0.11 0.10 0.06 007
0.11 032 0.09 003 009 002
001 0.02 0.10 0.09 0.08 0.04

Fig. 6. Weight matrices for the 9 features used in Fig. 4.




Neighbor gray levels as features in pixel classification

255

(a)

(b)

(c)

(d)

Fig. 7. Analogous to Fig. 3, using as features the average gray levels in 1x 1, 3x 3, and 5x35
neighborhoods of each point.

for best spatial edge coherency on each connected
component.

To determine the advantage while still generating
the ground truth automatically, we chose another set
of Forward Looking InfraRed images, let the Super-
slice algorithm determine a segmentation which we
took to be ground truth, and then added random noise
to the imagery. Any pixel by pixel thresholding
procedure, even one like Superslice, operating on noisy
imagery should have some trouble segmenting the
image well because the pixel to pixel grey tone may
have wide variations and the local internal spatial
coherency occurring in neighborhoods is not used.

14T
THR WEIGHT = 2.53
—0.31 048 0.26

28T
THR WEIGHT = —11.99
0.14 026 0.54

In our second experiment, we selected a new set of 25
Forward Looking InfraRed (FLIR) images showing
dark objects on a light background. The ten images
used for training are shown in Fig. 9. To obtain
training samples, the images were thresholded as
shown in Fig. 10; the thresholds were chosen, as
before, using the Superslice algorithm ‘. From each
of the ten images, 12 points were chosen from the
interior of the object and 12 from the interior of the
background, yielding a total of 120 object samples and
120 background samples.

Three sets of features extracted from these samples
were used to train classifiers. Let E be the gray level ofa

3T
THR WEIGHT = —1245
029 024 044
33T
THR WEIGHT = —2.52
031 0.10 0.19

Fig. 8. Weight vectors for the 3 features used in Fig. 7.




256

Fig. 9. Training images (no noise added).
Fig. 10. Superslice thresholds for training images.

Fig. 11. Training images with Gaussian noise added (o = 4).

sample point, and let the gray levels of E’s neighbors be

ABC
DEF
GHI

Then the three sets of features were as follows:

(a) E (pixel grey level)
(b) A,B,CD,E,F,GH,I (8-neighborhood)
(c) E; max (|D-E|,|E-F|); max (|B-E|,|E-H|);
B + D + F + H — 4E (local features).
Each set of features was computed for the 240 sample

points extracted from the images in Fig. 9. They were
also computed for the same points in a set of noisy
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Fig. 12. Test images (no noise added)

Fig. 13. Test images with Gaussian noise added (¢ = 4)

images obtained by adding independent Gaussian
noise with 4 = 0, = 4 to the images of Fig. 9 (see Fig.
11).

In training the classifiers, object samples were
labelled + 1 and background samples — 1. The result-
ing feature weights and thresholds for the four feature
sets, using the images with and without noise, are given
in Table 1.

The remaining set of 15 images, shown in Fig. 12,
constituted the test data. Discriminant values were
computed for every pixel in these images using each of
the four classifiers obtained from the non-noisy tran-
ing data. The resulting numbers of errors are shown in
Table 2. In addition, Gaussian noise with 4 = 0, ¢ = 4
was added to the test images (Fig. 13); discriminant
values were computed using the classifiers obtained
from the noisy training data. These errors are also
shown in Table 2. The locations of the errors are shown
in Figs 14 and 15 for the non-noisy training sets,
respectively.
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Table 1. Classifier weights and thresholds for training data
Feature No. of No noise Noise
set features Weight(s) Threshold Weight(s) Threshold
(a) pixel gray level 1 0.136 — 3.600 0.097 —-25M1
0.037 —0015 0.043 0.017 0.022 0.009
(b) 8-neighborhood 9 0005 - 0007 0017 —3.741 0.019 0.008 0.014 — 3.569
0.009 0.028 0.025 0.010 0.020 0.016
(c) local features 4 0.141; 0.004; —3.716 0.129:; 0.003; — 3.426
—0.021;0.042 —0.003; 0.028

For the non-noisy data, using the pixel’s gray level
as the sole feature gives by far the best results. This is
undoubtedly because the errors are defined in terms of
a segmentation based on gray level thresholding
(Superslice). Moreover, the training samples were all
taken from the object and background interiors, where
the neighbor gray levels are very close to that of the
center pixel, and where the difference values are very
small; thus when feature sets b and ¢ are used, errors
are common near the object/background borders,
where the feature vectors are unlike those of the
training data. Even if training samples had been taken
at the borders, unambiguous classification of border
pixels would still not be possible, since the borders lie
in all orientations, so that given arrangements of
neighbor gray levels can occur at both object and
background points. Figure 14 confirms that the errors
are indeed concentrated on the borders. Incidentally,
the few errors obtained using set (a) are all on the
image borders.

For the noisy data, on the other hand, the pixel gray
level feature gives by far the worst results. This is
because the noise makes single gray levels unreliable as
features, whereas sets of neighbor gray levels provide
redundancy. The error rate seems to depend primarily
on the number of features used; it is lowest for the 8-
neighborhood features (nine-dimensional), and about
the same for the 4-neighborhood (not shown here) and
local features, with five and four features, respectively.
However, the 4-neighborhood feature set has two
advantages over the local feature set.

(1) The features require no computation, since they
are simply neighbor gray levels, not arithmetic
combinations of such gray levels.

(2) They give the classifier maximum flexibility by
allowing it to work with the basic gray level
data, rather than forcing it to work with speci-
fied combinations of gray levels from which the
original gray levels can no longer be retrieved
(e.g., since absolute value and max operations
are involved).

Table 2. Numbers of errors for non-noisy and noisy test data

non-noisy test data

noisy test data

Test Image Set (a) Set (c) Set (d) Set (a) Set (c) Set (d)
6T 15 16 14 196 21 29
9T 107 122 115 454 114 137

11T 195 182 170 547 217 244
14T 45 50 53 211 63 74
15T 297 304 288 897 398 448
22T 74 75 80 499 115 164
42T 334 315 338 721 396 438
46T 253 252 253 856 330 368
48T 182 192 178 605 186 208
76T 206 212 207 337 213 209
80T 192 199 209 397 206 238
95T 1 50 42 459 103 118
99T 45 57 45 224 70 71
105T 68 69 73 450 104 118
114T 201 185 196 585 209 229
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Fig. 14. Tllustrates in black those pixels that were misclassified in the no-noise data.

3. CONCLUSION procedure for multi-image data, TEEE Trans. Circuits
Systems CAS-22, 440-450 (1975).

These results suggest that the gray levels of the pixel ~ 2. D- P. Panda and A, Rosenfeld, Image segmentation by

: p . pixel classification in (gray level, edge value) space, IEEE
agd its ne{ghbc‘prs are a good set of features to use in Trans. Comput. C-21, 875879, (1978).
pixel classification. There seems to be no advantage in 3. R. Ohlander, K. Price, and D. R. Reddy, Picture segmen-
using functions of the gray levels as features, even if tation using a recursive region splitting method, Comput.
these functions have simple intuitive interpretations in Graphics Image Processing, 8, 313-333, (1978),
terms of the local image structure (i.e, they respond to 4 B. J. Schachter, L. S. Davis and A. Rosenfeld, Some
s, ot i) experiments in image scgmenta.tl'on by clustering of local
ecges, spots, feature values, Pattern Recognition, 11, 19-28 (1978).
5. R. Duda and P. Hart, Pattern Classification and Scene
Analysis, John Wiley, New York (1973).
REFERENCES 6. D. L. Milgram, Region extraction using convergent
evidence, Comput. Graphics Image Processing, 11, 1-12,
1. R. M. Haralick and 1. Dinstein, A spatial clustering (1979).



Neighbor gray levels as features in pixel classification 259

¥ R
| B ~

P

-

" ;
L R sl B

Pixel gray level

g ".’N' @i . ‘n“‘:“r*
- 3 ; s ' A -y
e 2 :f -
a5l - 4 % -l T t- o
© - P TR RS . L 4
f“J~ il ’“.‘,‘xi., "-“ gl R Fin Vg o W Ry,
ooatl- R e ™ g i re i ar,‘ ind
& ‘,' -’ eV S ] ‘4. i Hr adPrre &
® « TURPI . e d G VR E L P T
o A A X
o i " L ~ T Ayt
", ¢ P u | 4 y
L ) -l'\l ! N o £ i H :‘ -
" Y ! L
o i . e
- i o ,1 - - 1 S ——
DU (07t o~ | g%
¥ v k .l %
- 5 - I "‘- s ® - y i . f k.. ,.,-r"
8 - neighborhood Local features

Fig. 15. Tllustrates in black those pixels that were misclassified in the noisy data.
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