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ABSTRACT 
Findpath problem is the problem of moving an object to the desired 
position and orientation while avoiding obstacles. We present an 
approach to this problem using a potential field representation of 
obstacles. A potential function similar to the electrostatic potential 
is assigned to each obstacle, and the topological structure of the free 
space is derived in the form of minimum potential valleys. A path 
specified by a subset of valley segments and associated object orien- 
tations, which minimizes a heuristic estimate of path length and the 
chance of collision, is selected as the initial guess of the solution. 
Then, the selected path as well as the orientation of the moving 
object along the path are modified to minimize the cost of the path, 
which is defined as a weighted sum of the path length, required 
orientation changes during the motion, and the chance of collision 
along the path. Findpath problems possessing three different levels 
of difficulty are identified. Path optimization is performed in up to 
three stages according to the level of difficulty of the problem. 
These three stages are addressed by three separate algorithms which 
are automatically selected. The performance of the algorithms is 
illustrated on a variety of two- and three-dimensional problems. 

1. 
1. INTRODUCTION 

This paper presents a solution to the findpath problem, defined 
as follows. Given a space littered with obstacles and a moving 
object (MO), find a continuous path and orientation connecting the 
starting positiodorientation and the goal positiodorientation of MO. 
Existing algorithms can be broadly classified as being either com- 
plete or approximate. Complete algorithms either find a solution or 
prove that none exists. Therc appear to be only two such algorithms. 
In the configuration-space approach [3], MO is shrunk to a point and 
obstacles are grown correspondingly. A solution is found in the 
configuration space through search. The critical-curve approach [9] 
divides free space into regions, each associated with ranges of feasi- 
ble orientations of MO. A solution is found by identifying a 
sequence of regions through which MO can move without assuming 
any infeasible orientation. Each of these algorithms takes a long 
time to find a solution. In the interest of generating fast algorithms 
many authors have proposed approximatc methods which reducc the 
problem complexity by approximating the shapes of MO and obsta- 
cles by simple ones such as circles and rectangles in two dimensions. 
Two-dimensional (2D) algorithms based on frcc-space decomposi- 
tion are reported in [ l ,  7, 101, and a threc-dimensional (3D) algorithm 
using an octrce reprcscntation is dcscribcd in [4]. Most of these 
algorithms have two disadvantages. First, thc allowed shapes are too 
rcstrictcd for the algorithms to bc applicablc in general cases. 
Sccond, thcy may fail to find a solution cvcn if thcrc is one. 

Thc approach prcscntcd in this papcr USCS a potcntial field 
representation of the obstaclcs. Scvcral motivations havc lead to thc 
use of such a representation. First, it is desircd to find a solution path 
which requircs MO to move along a smooth culvc with smoothly 
varying orientation. Many of the existing algorithms use geometric 

representations of objects which often result in paths with sharp 
comers. Second, it is desired that the identification of an approxi- 
mate solution path (e.g. its topological relationships to obstacles) be 
separated from the details of optimizing its cost. This would reduce 
computation time by limiting extensive computation to only those 
places where a solution is likely to exist. Third, thc nature of a seg- 
ment of the path through a given part of the free space should be 
determined only by the sumunding obstacles, thus. further reducing 
the computational complexity. Fourth, the allowcd shapes of objects 
should not be greatly restricted. These factors have prompted us to 
use the potential field representation. The potential field approach 
can be used to obtain a global representation of the space and to find 
collision-free efficient paths. A continuous potential field gives a 
good indication of distanw: to and shapes of obstacles so that neces- 
sary changes in position and orientation of MO can be made in a 
smooth and continuous manner. 

A potential field like representation has been used for related 
problems, but to a limited extent for path planning. Khatib [61 uses 
artificial potential repulsion to avoid obstacles locally. Use of poten- 
tial in manipulator control can be found in [8]. In both of these algo- 
rithms, potential is used as a warning of obstacles - like a proximity 
sensor. In contrast, we use the potential field to plan global paths. 
Thorpe [12] uses a potential like cost function in designing an 
optimal path for a circular MO in 2D. Suh and Shin [ l l ]  have 
reported a potential based algorithm to find the optimal path for a 
point MO in 2D, and given a brief sketch for the 3D case. It is our 
goal to develop a potential based approach to global path planning 
for the findpath problem in 2D and 3D. 

The potential field approach divides the problem into two 
stages. First, all topologically different paths between the starting 
and goal configurations are found, and a candidate path hat is mostly 
likely to yield the shortest collision-free path for MO is selected. 
Second, three algorithms are used to modify the candidate path to 
derive the final path and the orientations of MO along the path. Sec- 
tion 2 describes a potential field function and estimation of the topo- 
logical paths. Sections 3-5 describe three findpath algorithms to 
derive the optimal paths from the topological paths, and illustrate 
their performance on a variety of problems. hplemcntation details 
can be found in [5 ] .  The last section evaluates our approach, 
highlights some salient features of the approach, and discusses possi- 
ble future work. 

2. POTENTIAL FIELD AND TOPOLOGICAL PATHS 
A natural choice for potential is the Newtonian potcntial func- 

tion. Unfortunately, however, an analytic expression of the 
Newtonian potential is not available even for an arbitrary polygon. 
A potential function with a simple closed form is described below. 
Let g(x)<O, geCm, x e R n  be the set of incqualities dcscribing a 
region where x dcnotes the location of a point. Thcn, 

CH2752-4/89/0000/0569$01 .OO 0 1989 IEEE 
569 



is zero inside the region and grows linearly as the distance from the 
region increases. If the potential function p is defined as 
p ( x )  = [ & f ( ~ ) ] - ~ ,  where 6 is a small constant, p resembles the 
Newtonian potential; p ( x )  has its maximum value of 6-I inside the 
region and decreases as the inverse of the distance outside the region. 
The potential function of a triangular object in 2D is shown in Figure 
2.1. When there are multiple obstacles present, the potential at any 
point is given by the maximum of the potentials due to individual 
obstacles. It is crucial to use maximum rather than the sum of poten- 
tials. When the sum is used as the combined potential, small local 
maxima of the potential function may appear in free space away 
from obstacles. It is desired to have local maxima of the potential 
function only in the regions obstacles are occupying so that all parts 
of MPV are topologically distinct. The uniqueness of MPV is 
proved in the following propositions. 
Proposition 1. Local maxima of the potential function 
P ( x )  = Maximum [ p, ( x )  1, where j is an obstacle index, occur only on 
the obstacles. 
proof: The free space can be partitioned into regions such that each 
region contains exactly one obstacle, and at each point in the region 
the potential due to the obstacle is greater than the potential due to 
each of the other obstacles. The resulting partition is similar to the 
Voronoi partition with a different (potential based, instead of Eucli- 
dian) measure of distance. Any local maximum must occur either 
within some region or at a point on the boundary of some region. It 
cannot occur within a region since the potential due to each obstacle 
decreases monotonically as the distance from the obstacle increases. 
It cannot occur at a point on the boundary either, since the boun- 
daries consist of saddle points or local minima of the potential func- 
tion. 
Proposition 2. Any closed curve (surface) defined by the minimum 
potential valleys contains a local maximum of the potential function 
in its interior. 
proof: Suppose on the contrary that there is in MPV a closed curve 
(surface) that does not contain a local maximum in its interior. Then 
the maximum occurs at a point on the curve (surface). But this is a 
contradiction since a local minimum of the potential along a l i e  per- 
pendicular to the MPV occurs on MPV. 

2.1. Obtaining Topological Structure of Free Space 
It is an integral part of our algorithm to classify all possible 

paths into a finite number of representative, or topologically distinct 
paths, and examine only these for deriving collision-free paths. 
MPV lie as far away from the obstacles as possible and thus are good 
candidates for collision-free, topological paths. This unifies the steps 
of detecting topological and optimal paths through the use of the 
same representation. The MPV are represented by a set of nodes, 
and they are generated as follows. 

Figure 2.1 The potential function due to a two-dimensional, triangular obs- 
tacle. The potential is arbitrarily large in the obstacle region, and decreases 
roughly as the inverse of the distance outside the obstacle. 

MPV in 2D consist of curves, and they are generated begin- 
ning from the start position of MO. Initially, a circle of maximum 
radius contained in the free space is drawn with its center at the start 
node. The potential along the circumference of the circle is com- 
puted at a discrete interval, and the points of locally minimum poten- 
tial on the circle are labeled as neighbors of the start node. The 
neighbors are again treated as the start node to generate more neigh- 
bors. Successive nodes represents branches of MPV originating at 
the start node. The same procedure is canied out for the goal node. 

MPV in 3D are surfaces, and the search for the local minima 
has to be done on a sphere rather than a circle. This is computation- 
ally expensive. Furthermore, saddle points of the potential on the 
sphere must be also included among nodes to cover all MPV. The 
2D algorithm is modified to overcome these two problems. Begin- 
ning from the start and goal nodes, two sphercs of maximum radii 
contained in the free space are drawn. A preset number of nodes, 
called son nodes, are placed evenly on each sphere. Rather than 
linding local minima of potential among these nodes, they are 
ordered by their distance to obstacles (MD). The son node with the 
largest MD is selected as a point on MPV, and all the son nodes that 
are within the distance MD from the selected node are deleted from 
further consideration. Among the remaining son nodes, the node 
with the largest MD is selected as a point in MPV. The selection is 
continued until there is no son node left. The same process as used 
for start and goal nodes is recursively applied to the selected nodes. 

2.2. Search for the Best Path in Minimum Potential Valleys 
An optimal candidate path selected from MPV should be of 

the minimum length and least likely to cause collisions between MO 
and the obstacles. The chance of collision is estimated by a cost 
function that uses only the width and length of MO. We define the 
cost function C =I w ( x )  Idx I where the weighing factor w ( x )  is 
defined in Figure 2.2. If MD at x is smaller than one-half MO width, 
MO cannot go through x and the maximum possible weight is used 
at x .  If MD is greater than one-half the longest dimension of MO, 
MO can go through x in any orientation. Only length of the path is 
important in this case, and a uniform weight of 1 is used. The curve 
for intermediate MD values is a part of a hyperbola. but any curve 
similar to this could be used. The above choice of w ( x )  gave a good 
balance between chance of collision and the lengths of the paths for 
most of the findpath problems we considered. Once the cost function 
for each branch is determined, dynamic programming is used to find 
the minimum-cost path. This path is used by the algorithms 
developed in Sections 3-5 to determine the final collision-free path 
and orientations for MO. 

Figure 2.2 A weight function used in heuristics determining the best candi- 
date path. 
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3. PARALLEL OPTIMIZATION ALGORITHM 
The paraIIel optimization algorithm (POA) finds a path that 

minimizes a weighted sum of the path length and the total potential 
experienced by MO along the path. Minimizing the potential on MO 
favors object motion away from obstacles to avoid collisions, 
whereas minimization of the path length prevents MO from wander- 
ing deep into the free space. The objective functional to be minim- 
ized is 

5 9, 

x,% 
J = 1 [ ( l + b P ( ~ , 8 ) ) ( d x ) ~ + a ( d 8 ) * ]  (3.1) 

where P (X  ,e) is the total potential on MO at ( x  ,e). P ( x  .e) generally 
doesn’t have an analytic expression, and is approximated by a sum of 
the potentials computed at a set of points uniformly distributed over 
the surfaces of MO. Estimating P (x  $3) in this way places no restric- 
tions on the shape of MO. The second term in the integrand penal- 
izes the orientation change of MO, a being the relative weighting 
factor. 

The optimal control formulation [2] is used with the gradient 
algorithm to minimize J .  A numerical method starts with an initial 
guess of the solution and iteratively changes it to decrease the value 
of the functional J .  We use the best candidate. path selected from 
MPV as an initial guess for position of MO. The initial orientations 
of MO along the path are assigned such that the longest axis of MO 
is tangent to the initial path. This minimizes the space swept by MO 
during the motion, and thus the chance of collision on the average. 

3.1. Examples 
The performance on a range of 2D and 3D problems is 

described to bring out the capabilities and limitations of POA. Fig- 

Figure 3.1 Prob!em of moving a bar around a comer of an L-shaped hall- 
way. 
(a) The initial path and orientations. 
(b) A collision free path and orientations found by POA. 

ure 3.1 shows the problem of moving a line segment around the 
comer of a hdway. The path and orientations shown in Figure 3.la, 
which involve collisions, are used as the initial guess. The resulting 
solution shown in Figure 3.lb avoids the obstacles by making a 
proper tum at the comer. Figure 3.2 shows a case where intclligent 
maneuvering is necessary in order to move the L-shaped object 
through the narrow passage. Although the result is indeed locally 
optimal in the sense of (3.1). the rcsulting solution is not collision 
free. 

Figure 3.3 demonstrates the effect of the potential term in the 
performance index J .  In Figure 3.3a, the space between the top and 
bottom blocks is wide enough for a T-shaped object to go through to 
minimize the path length. When the space is narrow, the T-shaped 
object elects to go around all three blocks to minimize the potential. 
The next example demonstrates the ability of POA to handle initial 
guesses involving collisions. A rectangular board is to tum the 
comer of an L-shaped hallway, and the initial path is shown in Fig- 
ures 3.4a. POA changes the orientation of MO to a semivertical 
position to make a tum, resulting in a collision-free path of minimum 
length. 

The last example illustrates a case where POA with a simple 
heuristic to assign the initial orientation fails. Consider the problem 
of moving an H-shaped block through an H-shaped hole as shown in 
Figure 3.5. If the initial orientation is assigned so that the longest 
axis of the H-shaped block lies in the direction of motion, a success- 
ful path will not be found. T h i s  problem requires a more sophisti- 
cated method of assigning the initial orientation along the candidate 
path. It is therefore necessary to complement POA with other steps 
so that appropriate perturbations of configurations can be made. 
Such an algorithm is described in the next section. 

Figure 3.2 The problem of moving an L-shaped object through a narrow 
channel. An intelligent maneuvering of the moving object is necessary at 
the bottleneck. 
(a) Initial guess of a solution. 
(b) Result of optimization. POA fails on hard findpath problems. 

Figure 3.3 A T-shaped object is to move across the stack of three blocks. 
(a) When the gap between the blocks is wide, the T-shaped object goes 
through the gap to minimize the path length. 
(b) When the gap is narrow, the T-shaped object goes around all three 
blocks to minimizc the potential. 

Figure 3.4 A long rectangular board turning a comer of a hallway. The 
board assumes a semivertical orientation while turning in the narrow comer 
space. 
(a) Top view of the initial path and orientations. 
(b) The result of POA viewed from the top. 
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Figure 3.5 An H-shaped block is to go through 1he wall with an H-shaped 
hole. This problem requires spalial reasoning to determine the appropriate 
orientation of the moving object at the narrow region. 

4. SERIAL OPTIMIZATION ALGORITHM 
SOA first examines the initial path and identifies the parts of 

the path that may cause collisions. Then minimization of the total 
potential on MO is camed out in these collision regions locally. 
Since the minimization is done locally, SOA can take into considera- 
tion the shape of MO and the local geometry of the free space much 
more effectively. SOA divides the task into four steps. First, MO is 
moved along the candidate path and the collision regions are 
identified. Then collision-free configurations of MO in these regions 
are found. The next task is to connect a collision-free configuration 
of one of the collision regions with a collision-free configuration of 
an adjacent collision region. If the start configuration and the goal 
configuration can be connected through a sequence of collision-free 
configurations in the collision regions, then a solution of the findpath 
problem follows. If no such sequence is found, then the candidate 
path is assumed not to lead to a solution.'-Finally, POA is used to 
minimize the length of the collision-fee path generated by SOA. 

4.1. Identification of collision regions 
After the best candidate path has been selected, SOA identifies 

collision regions, i.e., narrow parts of the free space where MO needs 
to be in specific configurations, different from the initial guesses, to 
avoid collisions. MO is moved along the initial path with its orienta- 
tions assigned as in POA. The place in each collision region where 
MO overlaps with obstacles the most is called the collision center. 

4.2. Feasible configurations in collision regions 
There are usually an infinite number of collision-free 

configurations in each collision region, and they have to be grouped 
into a finite number of topologically distinct configurations. This is 
achieved by selecting only those configurations which yield locally 
minimum potentials on MO. In 2D, MO is rotated with its center 
(reference point) fixed at each collision center, and the orientations 
of locally minimum potentials are identified. Then for each such 
orientation the center of the MO is moved around the collision center 
to further lower the potential on MO. Some of these configurations 
may still involve collisions, and only those without collisions are 
considered as the feasible configurations. In 3D the three- 
dimensional orientation space makes it difficult to classify the 
collision-free orientations into topologically distinct classes. 
Without solving this problem in a general way, we use the following 
ad hoc method in 3D. The longest axis of MO is placed in a finite 
number of directions, and MO is rotated about the longest axis to 
find orientations of locally minimum potential. Then the position of 
the reference point is changed to further lower the potential. Finally, 
those orientations without collisions arc selected as the feasible 
configurations. 

4.3. Connecting feasible configurations 
The findpath problem is now transformed into the problem of 

fmding a connected sequence of feasible configurations, one from 
each hard region, from the start to goal Configuration. This requires 
search. To minimize changes in the orientation of MO between adja- 
cent configurations, those adjacent feasible configurations with the 
closest orientations are selected first. SOA tries to connect two adja- 

cent configurations of MO by making two replicas of MO in the 
adjacent configurations move toward each other. In doing so, the 
initially chosen path from h4PV must provide the MOs with the gen- 
eral direction to move. MO is allowed to move within 45 degrees 
from the initial candidate path. This restriction drives the two MOs 
toward each other, while allowing MOs to adjust the position and the 
orientation to minimize the potential locally. After one of the MOs 
moves one step, SOA checks whether the two configurations can be 
connected by moving MO in a straight l i e  and changing the orienta- 
tion at a uniform rate. If this succeeds, the two feasible 
configurations are connected. If this fails. one of the MOs takes 
another step closer to the other MO while minimizing the potential. 
The connecting algorithm signals failure when a MO collides with 
obstacles, or when the two configurations are still not connected 
even after the two MOs step through all the nodes on the path 
between the two configurations. 

4.4. Parallel optimization of the result 
A solution to a findpath problem found by SOA is not optimal 

with respect to the objective functional J given in equation (3.1). 
The result of SOA can be used as an initial path by POA to yield the 
final path of a minimum length with smoothly changing orientation 
of MO along the path. 

4.5. Examples 
AU the examples presented in this section contain "narrow" 

bottlenecks in the free space around which intelligent maneuvering 
of MO is required. In all the examples the solution paths always lie 
near the candidate topological paths. The first example is the 
problem of moving an L-shaped object through three polygons, as 
depicted in Figure 4.1. When the L-shaped MO is moved along the 
candidate path, it collides with the obstacles between the two rectan- 
gles. SOA finds feasible configurations in this region and connects 
the start and goal configuration using one of these feasible 
configurations. 

Figure 4.2 brings out several properties of SOA. SOA tries 
three topological paths before finding a collision-free path and orien- 
tation. These three paths are shown in Figure 4.2a. Path I is the 
shortest path in length but the L-shaped MO cannot make a tum in 
the space between the triangle and the two small squares. The next 
best path, Path 11, can be used by SOA to transfer MO to the goal 
location but in a wrong orientation. Although the free space around 
the goal location is wide enough for MO to rotate, it amounts to a 
slight sidetracking form the candidate Path 11. SOA does not allow 
sidetracking and abandons this path. SOA does find a collision-free 
path and orientation along thc third topological path, Path 111, and the 
solution is shown in Figure 4.2b. Figures 4.3 shows a bird coming 
out of its cage. It has to duck undcr the edge of the roof to come out. 

The next example in Figure 4.4 shows a case on which SOA 
fails. One collision region occurs at the comer of the V-shaped 
channel, and two feasible configurations (FC1 and FC2) in the colli- 
sion region are shown in Figure 4.4. The start configuration can be 
connected to FCl, but FC1 can not be connected to the goal 
configuration. Similarly, FC2 can be connected to the goal 
configuration, but the start configuration cannot be connected to 
FC2. A remedy for this problem is to realize that FCl and FCZ can 
be connected by moving them forward into the sharp comer. This 
amounts to a sidetracking from the candidate path. Such problems 
are addressed in the next section. 

Figure 4.5 shows a tall, skinny, triangular pyramid going 
through a small triangular opening and a narrow vertical slit. Figure 
4.6 shows an L-shaped MO turning a comer in a hallway whose 
width is much smaller than thc length of the legs of the L-shaped 
MO. The hard region is obviously at the comer. MO has to lqwer 
one of its legs to assume a horizontal position at the comer, and then 
raise the other leg to reach the goal configuration. Figure 4.7 shows 
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Figure 4.1 An L-shaped object goes through a tight 
The L collides space to minimize the path length. -. 

. . . . . . , 
. *  . , . . oi-1 

between the two rectangles when moved along the 
initial path. SOA finds feasible Configurations in this 
region, and connects the start and goal using one of 
the feasible configurations. 

rigme 4.2 Moving an L through rectangular obstacles. 
(a) Minimum potential valleys and three topologically distinct paths attempted by SOA. 
@) The solution derived by SOA from the initial guess 111. Initial guesses I and I1 fail to 
yield a solution. 

FC2 

branch 3 

start 

Figure 4.3 A bird has to duck under the roof to 
come out of the cage. 

iFC, \"nctlon V 
Figure 4.5 A tall tetrahedron tilts to go through a 
triangular opening, stands vertically to Figure 4.4 A problem for which SOA fails to 

find a solution. 

(a) Sideview @) Topview 

Figure 4.6 An L-shaped object turning the comer of a MITOW hallway. 

a helix-shaped mechanical spring going through a small opening in a 
wall whose width is smaller than the diameter of the spring. The 
only solution is to rotate MO to screw through the opening. This 
problem would probably have caused the existing algorithms a great 
deal of difficulty due to the particular shape of MO. Our method of 
representing MO with a grid of points on its surface makes the 
potential field approach tolerate MO of almost any shape. 

5. SIDETRACKING ALGORITHM 
This section deals with the hardest class of problems that we 

have considered. Thcse problems requirc intelligent nonlocal 
maneuvering of MO. That is, MO may have to take into considera- 
tion the geometry of the free space far away from its current location 
in order to solve the findpath problem at the current location. Figure 
5.3 illustrates such a situation. Even humans may exhibit noticeable 
delay in solving such findpath problems, possibly because a sequen- 
tial search of the space may be hard to avoid. Let us return to the 

make a turn. 

(0 (d) (e) 

Figure 4.7 A mechanical spring has to rotate several times to go through a 
hole whose width is smaller than the diameter of thc spring. 

example in Figure 4.4. Figure 4.4 shows MFV, the start and goal 
configurations and the feasible configurations (FC1, FC2) in the col- 
lision region, which is at the sharp comer. The graphical representa- 
tion of the problem is shown in Figure 5.1. The solid edges between 
two nodes mean that the two nodes (or configurations) are connected 
by SOA, and the dotted edges mean that the nodes cannot be con- 
nected. SOA tries to connect the nodes in Figure 5. Ib in the order of 
the integer labels of the edges. SOA signals failure after attempting 
to connect the start node and FC2. It can be easily seen that the solu- 
tion to this problem is to connect FC1 and FC2, and then connect 
FC2 and the goal configuration. Connecting FCI and FC2 requires 
MO to move from these configurations toward thc comer, following 
branch 3 of MPV in Figure 5.la. Connecting two feasible 
configurations in one collision region involves sidetracking from the 
initial candidate path. If SOA is equipped with sidetracking capabil- 
ity to connect the feasible configurations in thc same collision 
region, that would help solve the hardest class of the problems we 
have considered. 
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5.1. Sidetracking Algorithm nected to the backward node, then STA tries to use some of the 
The purpose of sidetracking is to take an excursion from a nodes that are neither forward nodes nor backward nodes ("B 

point P along the initial candidate path only to change the nodes) as intermediate nodes in trying to connect the backward node 
configuration of MO when it is not possible to dc X) locally at point to one of the forward nodes. If all of these anempts fail, then the 
P. This could be done by moving MO away from the region by fol- backward tree is expanded until another backward node is generated 
lowing MPV connected to the region. Thus, the only places where in a junction region. This process of spanning the backward tree and 
MO is allowed to take excursions from the initial candidate path are sidetracking continues until a solution is found or the backward tree 
the start node, the goal node and the junction nodes on the initial cannot be expanded any more. 
candidate path. It is thereroore necessary to find feasible Having determined the places to sidetrack and the two feasible 
configurations at these places in addition to the collision regions. configxations to be connected by sidetracking, it remains to deter- 
The regions corresponding to the start, goal and junction nodes will mine the exact paths to be used for sidetracking. Since sidetracking 
all be called junction regions. The graphical representation of the. is always done from the junction regions, the branches of MPV con- 
findpath problem in Figure 5.lb now becomes that shown in Figure nected to the junction region provide excellent dircctions to side- 
5.2a. TWO additional nodes are placed at the top and bottom in order track. In case there are more than one branch, the branch leading to 
to distinguish the Start and goal configuration from the feasible a wide part of the free space in the shortest distance is selected first. 
configurations at the start and goal nodes, and to define unique Start In 2D, there are a small number of junctions from which to sidetrack. 
and goal nodes. In 3D, however, most nodes have more than two neighbors, and thus 

Once the feasible configurations in the junction regions in are junction nodes. TO limit the number of junctions to a reasonable 
the collision regions are found, SOA is applied from the Start node. level, Only those nodes on thc initial path with locally maximum 
For the example in Figure 5.1a, SOA signals failure after generating number of neighbor nodes are used as junctions. 
the graph in Figure 5 . b .  A solid edge between two nodes means 

5.2. that the two nodes are connected by SOA, and a dotted edge means 
that the two nodes cannot be connected by SOA. The solid cdges STA can solve much harder problems than both POA and 
form a tree structure, which will be referred to as "forward SOA. In the problem in Figures 5.3, the arc needs to sidetrack first 
me nodes in the forward tree called "forward nodes," represent the to the wide space at the right, then to the left of the T-shaped jmc- 
configurations which be reached from the Start node. upon the tion to reach the goal. Figure 5.4 shows the problem of moving a 
fadure of forward SOA, STA applies SOA backwards from the goal chair from one side of a desk to the other side. The chair is small 
node. ms process spans a "backward consisting of the "back- enough to go undemeath the desk, but has to sidetrack away from the 
ward nodes." Whenever the backward tree reaches a node in a junc- desk so that the seat is between the drawers in the final configuration. 
tion region that contains forward nodes, STA tries to connect the 
backward node with each of the forward nodcs in the region via side- 
tracking. If one of the forward nodes is connected to the backward 
node, a solution is found. If none of the forward nodes can be con- 

start 

0 \ -30 -180 150 '. 
goal .0 

Figure 5.1 The graphical representation of the 
problem in Figure 4.4 

forward t 

(b) 
Figure 5.3 The arc needs to sidetrack twice; 
first, off the junction to the wide space (a). and 
then, on r e m ,  slightly to the left to reach the 

Figure 5.4 The problem of moving a chair from 
one side of a desk to the other side. 

(a) (b) 

Figure 5.2 The graphical representation of the 
sidetracking algorithm. goal 0). 
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