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ABSTRACT

This paper concerns estimation of surface maps for real
scenes having a wide field of view and a wide range of depths.
Much research has emphasized stereo disparity as a source of
depth information. To a lesser extent, camera focus and
camera vergence have also been investigated for their utlity in
depth recovery. We argue that these sources of visual
information have mutually complementary strengths and
weaknesses, and to obtain surface maps for real scenes these
processes must be integrated. Such integration requires active
control of camera orientations and imaging parameters to
dynamically and cooperatively interleave image acquisition
with surface estimation. Accordingly, a global surface map of
the visual field is synthesized by systematically scanning the
scene, and combining estimates of adjacent, local surface
patches, each acquired by an intermediate camera
configuration and having a small depth range. We present an
algorithm to perform this integration, and describe its
implementation on a dynamic stereo-camera imaging system.
Experimental results are presented to demonstrate the superior
performance of the integrated system over that of each of its
components.

1. INTRODUCTION

Many algorithms have been developed for estimating
surfaces from stereo images of a scene. Most of these
algorithms assume that the images are acquired from known
viewpoints, with suitable camera orientations, and, of course,
with the area of interest in proper focus. In general, a three-
dimensional (3D) scene point projects onto different relative
locations in the two stereo images, and when the imaging
geometry is known, the disparity between these two locations
provides an estimate of the corresponding 3D position. For
most past work in computational stereo vision, stereo disparity
has served as the only source of 3D information.

Researchers have also considered other visual cues,
usually as independent sources of depth information. For
example, the role of camera focus as a means of depth
estimation has been studied [Horn68, Krot86b, Subb87]. Some
researchers, however, have considered mutual cooperation
among these and other cues. Marr and Poggio [Marr79,
Marr82] point out the role of eye movements in providing
large relative image shifts for matching stereo images having
large disparities. Sperling [Sper70] presents a model for the
interactions of wvergence, accommodation (focus), and
binocular fusion. Geiger and Yuille [Geig87] describe a
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framework for using small vergence changes to help
disambiguate  stereo  correspondences.  Erkelens and
Collewijn [Erke85] discuss interactions between vergence and
stereo for biological systems. However, only limited use has
been made of these sources in developing computational
approaches [Krot86a], especially in a mutually cooperative
mode such as discussed in [Sper70] and [Krot87].

This paper is concemned with the integrated use of focus,
camera vergence and stereo disparity information for surface
estimation. The motivation for such integration comes from the
following observations: At any given time during imaging,
sharp images can be acquired only for narrow parts of the
visual field, capturing a limited depth range. The specific part
of the visual field and the depth range imaged are determined
by the camera vergence and focus used. However, real scenes
are wide and deep; therefore the camera vergence and focus
must be controlled to scan the scene to acquire complete data.
The global surface map of the scene must be synthesized from
local, partial maps obtained using the local data. To
accomplish this, the acquired images can be analyzed for
stereo correspondences, and a surface map obtained from the
associated disparities. This partial surface map may then be
used to direct movement of the cameras to new, unmapped
portions of the scene. Thus a cooperation between camera
motion and image analysis, or equivalently between image
acquisition and 3D surface extraction, is necessary.

This paper presents a computational approach to
accomplish the integration mentioned above. We first briefly
discuss the stereo, vergence and focus processes individually
as sources of 3D information (Section 2). We then argue that
these sources complement each other and should be used in an
integrated mode (Section 3). In Section 4, we describe some
models of integration for biological vision, and present a
computational model for dynamic surface reconstruction that
we have developed and tested. In Section 5, we describe an
algorithm that uses the integration approach. Section 6
describes an implementation of the above algorithm, and
presents experimental results. Section 7 presents a summary.

2. STEREO DISPARITY, CAMERA VERGENCE, AND
FOCUS AS DEPTH CUES

The binocular cues of stereo disparity and camera
vergence and the monocular cue of focus have long been
recognized as important sources of 3D information. Since all
three play important roles in our approach, we will first briefly
describe each of these cues individually, and review past work
on using these cues to estimate surfaces.



2.1. Stereo Disparity

Many algorithms have been developed for estimation of
surfaces from stereo images of a scene. Typically, the images
are assumed to have been acquired from suitable viewpoints,
and with knowledge of the imaging geometry provided. The
paradigm used by these algorithms is: (1) detect suitable
features in each image, (2) match corresponding features to
determine their depths, and (3) interpolate to obtain a complete
depth map. The features used are either edge-based or arca-
based. Edge-based algorithms use intensity edges as features
and attempt to match individual edge points [Arno78, Bake81,
Barn80, Grim81, Hend79, Kim86, Marr79, Ohta85], or linear
edge segments which consist of chains of aligned edge points
[Ayac85, Lim1987, Medi85]. These algorithms complete the
matching process before surface interpolation is performed.
depth map. Uniqueness of matching is only enforced by
conditions that involve simple local relationships among
disparity values and not the properties of the resulting surface.

We have developed an approach [Hoff87, Hoff85] that
uses a piecewise surface smoothness constraint to obtain a
surface map from two stereo images taken using a fixed,
known camera configuration. Integration is performed using a
model of the real world in which objects are viewed as having
smooth surfaces in the sense that the normal direction varies
slowly except across relatively rare creases and ridges. Thus,
the surface characteristics are used to resolve matching
ambiguities, and matching decisions are made so that the
resulting surfaces are piecewise smooth.

Most algorithms, including ours, require an externally
specified, coarse, initial disparity/surface estimate which is
refined using stereo analysis to obtain a more accurate surface
description. Without such an estimate, exhaustive search for
correspondences would be required.

2.2, Camera Vergence

Camera vergence is important in surface estimation for
two principal reasons: the 3D location of a point can be
computed from knowledge of the vergence angle; secondly,
camera vergence rotations reduce binocular disparity to a range
suitable for stereopsis. In this section we describe the imaging
geometry for vergence and the process of fixation,

2.2.1. Imaging geometry. Consider a stereo pair of cameras
having their optical axes in the horizontal plane, so that each
can rotate about its vertical axis. For simplicity, assume that
the two cameras are at the same height, and the vertical
rotation axis for each camera passes through its optic point.
The center of each image is the projection of a scene point
which lies on the optical axis of that camera. Referring to
Figure 1, angle v is known as the vergence angle, and the
baseline is the distance separating the optic points of the two
cameras. The intersection of the optical axes of the cameras in
front of the cameras is known as the poins of vergence. From
knowledge of the baseline distance and the rotation angles, it is
possible to determine the vergence angle and the 3D location
of the vergence point.

2.2.2. Vergence and fixation. When the point of vergence is
known to lie on some surface in the scene, this is known as the
point of fixation, and it is possible to use vergence information
to estimate the location of the surface. It is a fundamental
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Figure 1: Top view of verged cameras. The vergence angle v
can be calculated from knowledge of the baseline and the
anglesa and b.

problem, however, to verify that both cameras are in fact
aimed at the same 3D scene location. A common approach to
this problem is to vary the vergence angles so that the two
images match, or are in registration near their centers.

Registration is a basic problem in image processing and
cartography. For translational registration, one image array is
shifted with respect to the other in search of the optimum value
of a similarity criterion function. The most common methods
of translational registration are minimum-distance and cross-
correlation. The minimum-distance approach attempts to
minimize the p-distance metric d, defined as

dp (s, 0)=[[ 110e,y) =1 Gets, y+0) 1P dudy

where I; and I, are the left and right images, and p =1. For the
normalized cross-correlation approach, it is necessary to
maximize this similarity measure:
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While it is typically assumed that the search image does
indeed contain an appropriate subimage, no guarantee exists
that any registration method will produce a correct or unique
result [Barn72). For close-range applications, these methods
can fail when the surface gradient is sufficiently large relative
to the image planes. Other problems, such as image
periodicities and insufficient detail, can also lead to incorrect
registration.

d%(s,t)=

2.2.3. Occlusion. In general, it is not possible to fixate every
scene point because nearby objects may occlude surfaces that
are more distant. For example, see Figure 2. The left focal
axis is aimed at point P (Figure2a). If the right camera is also
aimed at this point (Figure 2b), point Q obstructs the view.
Point P therefore cannot be the point of fixation. For vergence
information to be useful, the two cameras can either aim at a
nearby point Q (Figure 2c) or try to fixate another distant point
R (Figure 2d).



(c)

Figure 2: Demonstration of occlusion, using top views of
verging cameras. Initially, scene point P projects onto the
center of the left image (a).An attempt to fixate P brings the
image of point O on the circular object into the center of the
right image (b). Because of this occlusion, the system could
now attempt to fixate either the near point Q, as shown in (c),
or could now try to fixate a point R on the distant surface (d).

Very little research has addressed the problem of
occlusion within the context of fixation. We refer to the active
process of detecting and avoiding occlusions during fixation as
explorarory fixation. This will be addressed again in Section 5.

2.3. Focus

The degree of image blur for a particular scene object is
directly related to the focus setting of the camera lens.
Traditional approaches seek to vary the focus setting of the
lens until image sharpness is maximized. The focus setting can
be mapped to a depth measurement either mathematically or
with predetermined look-up tables.

Mathematically, a scene point is in focus when the lens
law is satisfied. Applying the thin lens model for a uniform
medium, this law is formulated as

1,1

u v

1
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where u is the distance from the lens center to the scene point,
v is the distance from lens center to the focal plane, and f 1is
the focal length of the lens. If we know that a point is in focus,
and if v and f are known, then from the lens equation we can
in principle determine the distance to the object.

When a scene point does not satisfy the lens equation, the
image is blurred. The effect of defocusing can be modeled, to a
first approximation, by the convolution of the image with a
point-spread function. This acts as a low-pass filter, and results
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in a loss of high spatial frequency components in the image.
Measures of high-frequency content can therefore be used to
develop a criterion function which assumes its optimum value
when the image blur is minimized and the image is in sharpest
focus.

Several autofocus methods have been proposed in the
past. Horn [Horn68] describes a Fourier-transform method, in
which the normalized high-frequency energy from a one-
dimensional FFT is used as the criterion function. A survey
and comparison of other criterion functions for focus is
presented in [Ligt82]. The criterion functions described
therein make use of such measures as signal power, gray level
standard deviation, thresholded pixel counts, and summation of
squared gradient in one dimension.

The accuracy of the range estimates from focus depends
on the available depth of field, which in turn depends on the
lens parameters of focal length and aperture. Narrower depths
of field are implied for larger focal lengths and larger
apertures, as long as imaging elements are not driven into
saturation from lighting conditions. For given imaging
parameters, overall accuracy of the estimated depth depends on
the depth of the scene point of interest.

3. THE NEED FOR INTEGRATION

Each of the above processes may give an estimate of
scene depth independently. Here we discuss the benefits of
cooperation among these processes, and the need for camera
movements in surface reconstruction for real scenes. First we
discuss some salient characteristics of these depth cues.

o Focus provides an estimate of depth whose accuracy
decreases with increasing object depth as well as with
increasing depth of field.

e Vergence provides a depth estimate of the point of
intersection of the optical axes. This estimate is quite accurate
for large vergence angles but accuracy decreases for objects far
away. However, to use the vergence cue, it must be ensured
that the two cameras actually are aimed at a single scene
point. This may not be the case if the view of one of the
cameras is obstructed (Figure 2b).

e Stereo disparity provides an accurate depth estimate only if
an accurate coarse estimate is available initially. Thus, if the
scene has a large depth range, it may not suffice to give, for
example, a constant-depth surface as a coarse surface estimate.
Further, since the stereo analysis depends on locations of
features (eg., edges) and their correspondences, it is necessary
that the features appear sharp and well localized. This requires
that the scene be well in focus when.imaged.

Real scenes are often wide, and have large depth ranges.
To map real surfaces, therefore, none of the above cues is
sufficient by itself. Each has its own limjtations and strengths.
However, it is interesting to note that their strengths and
weaknesses are complementary. For example, while stereo
disparity can provide accurate surface reconstruction, it
requires a coarse initial surface estimate which can be readily
provided by focus and/or vergence. However, depth estimation
of a scene point from vergence is valid only if it is ensured that
both cameras are actually fixated at that point. This is not a
serious problem for distant objects, since occlusion then
becomes insignificant. For relatively close objects, fixation
can be verified by ensuring that the depth estimates for the



image centers provided by the focus process are for the same
3D point.

For close objects, the focus and fixation processes may
also be used to detect object boundaries, thus simplifying the
occlusion problem during stereo analysis. The stereo process
can use this additional evidence for occlusion to identify the
regions in each image which could not have correspondences
in the other image. Such regions can then be excluded from
consideration in the surface estimation process.

Another problem that arises when stereo alone is used is
that in any given configuration a surface estimate can be
obtained for only a limited part of the complete visual field of
interest. The part of the visual field which can be imaged and
analyzed is limited both along the lateral dimensions and along
the depth dimension. The former limitation occurs because of
the limited field of view of the cameras, and may be remedied
by changing the orientations of the two cameras so that their
optical axes intersect in different parts of the visual field. The
latter limitation arises for two reasons. First, the entire surface
may not be in focus simultaneously over its large depth range.
Second, the entire surface may not give disparity values in a
workable range; for example, the parts of the surface much
closer than the point of fixation may give disparity values on
the order of image dimensions, whereas those parts much
farther may give disparities that are too small (less than a
pixel) for depth recovery. This problem may be remedied by
obtaining depth estimates of small parts of the surfaces at a
time, having small depth ranges. These local surface patches
can be imaged by changing the vergence angles of the cameras
so that the point of fixation moves along the depth dimension,
while simultaneously adjusting focus to obtain sharp images.

4. A COMPUTATIONAL MODEL OF INTEGRATION

To obtain surface maps for real scenes, camera directions
and other imaging parameters must be changed to image
different parts of the scene. Like human eyes, the cameras
must pan and tilt, converge and diverge, focus on near and far
objects to acquire stereo images for different fixation points.
This results in a dynamic data acquisition system in which
surface estimation is integrated with image acquisition, both
being performed over small portions of the scene repeatedly.

There are two major consequences of this. First, surface
estimation is performed over the scene in a piccewise fashion
and the local estimates must be combined to build a global
surface description. Secondly, the next camera configuration
for image acquisition is determined by the current
configuration and the current state of the cumulative surface
map. As the scan of the scene continues, depth maps generated
for visual subfields around different fixation points must be
merged to generate the composite depth map of the entire
visual field, possibly having a much larger global depth range
than the individual local maps.

The cameras must be under ‘‘active’” control, i.e., the
imaging parameters must be determined by the current state of
the system. The term ‘‘active” has been used by some
researchers simply to indicate that information from several
images is to be integrated, although new camera parameters
may not be based on information extracted from those images.
Also, active vision is not to be confused with active sensing
(eg., laser ranging). The essential elements of the active
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surface reconstruction paradigm, for a static scene,! can be

represented by the following repeating pair of operations:

1) Visual target selection
2) Surface estimation in the target area

Here, a visual target means a potential point of fixation. An
autonomous system must be able to select visual targets based
on the current global surface map. After selection of a target,
the system aims the cameras at the target and performs local
surface estimation in the vicinity of the fixation point. The
pewly obtained surface is added to the accumulating composite
surface map, before iterating back to the first step. These steps
are discussed below separately.

4.1, Visual target selection

This step determines how the scene is traversed as a
surface map is accumulated. The basic question is this: What
criteria should be used to select a point in the unmapped part of
the visual field where surface information should be acquired
next? This is reminiscent of eye movements in human vision
for which slow eye movements interspersed by frequent jumps
(saccades) characterize the continuous search for target points.
Before we devise computational criteria for this purpose, it will
be useful to review some facts concerning human eye
movements.

4.1.1. Psychological studies. Human eye movements occur
so that the image of a scene area of interest falls on the fovea,
where retinal resolution is highest. The selection of point for
fixation is a complex and highly goal-dependent process,
which usually takes place below the level of conscious
thought. The psychological literature contains many studies of
eye movements. The purpose of these studies is typically to
infer properties of higher-level cognitive activity which govern
the movements. Very few studies deal with 3D domains, and
these are usually concerned with ergonomics or vehicle
operation. Here we list findings from various 2D
psychological studies. in which subjects exhibited the
following strong tendencies during the selection of new
fixation points:

(a) Sequences of visual targets are selected in a centrifugal
order, beginning at the departure point (initial fixation point).
This implies that proximity to the original point of fixation is
an important criterion [Lévy81].

(b) Upward eye movement is preferred over downward
movement [Lévy81].

(¢) Eye rotation either to left or right is preferred, depending on
the person [Lévy81].

(d) For several potential targets in the visual field, those lying
closer to the fovea are more likely to be selected for fixation
[Find81]. This effect may depend partially on the change in
resolution from fovea to periphery.

(e) When scanning random 2D polygonal forms, eye fixations
tend to concentrate near vertices [Bozk82],

(f) During examination of pictures, saccades are directed to

! Our domain of research is presently limited to the case of stationary
scenes. For a moving visual field, a smooth pursuit step should be added 0
this sequence. This would complete the biological pattern known as
‘“‘optokinetic nystagmus.”’



peripheral areas of ‘‘informative detail,”” [Mack67] which
involves higher-level recognition of image objects (eg.,
features of human faces).

(g) When symmetry is present in 2D displays, subjects tend to
concentrate fixations along the axes of symmetry [Loch87].

(h) When peripheral stimuli are presented suddenly, the
resulting strong temporal cue often leads to a saccadic eye
movement toward the target [Find81, Find83].

These findings are not necessarily true for all situations, but
can provide a basis for general criteria to guide visual target
selection.

4.1.2. A simple computational model for target selection.
The psychological results summarized above suggest that the
following factors are important in the selection of the next
point for fixation: 1) absolure distance and direction [eg., (a-
d)]. 2) 2D image characteristics [eg., (e-g)], and 3) temporal
changes [eg., (h)]. We identify the following additional
criteria based on purely computational considerations: 4)
surface smoothness: the selected point should smoothly extend
the known surface unless the point lies beyond an object
boundary; 5) object boundaries: when the selected point lies
across an object boundary, any known qualitative relative
distance information should be used to select a new object for
fixation; 6) occlusion regions: the system should not attempt
to fixate the parts of the visual field which are not visible from
both cameras; thus, to maximize the rate of growth of the
image area analyzed and the likelihood of correctly predicting
occlusion regions, the scan should proceed from near objects to
farther objects; 7) compactness: successive fixation points
should be selected so as to grow a surface outwards from initial
fixation point, since most objects yield compact regions in the
images; and 8) complexity: the total number of fixation points
should be minimized.

Our current model is a simple one, and incorporates only
those criteria that involve surface geometry. We have not
taken into account any criteria that require an analysis of image
gray-level structure or that involve any temporal changes. Our
model incorporates criteria (1, 4, 6-8), but excludes the more
complex criteria (2, 3, 5) which will be included in a later
version. Thus our current model stresses proximity: angular
proximity to the original fixation point Py and the current
fixation point P;, and distance of the target from the cameras.
The target P is chosen so that the following weighted average
is minimized:

FWP)=kiRP)+k, AP, PH+Ek2AP,Py)

The function R gives the estimated distance from P to the
camera platform. The value A (Q1, Q) represents the angular
separation between two 3D points, relative to the current
camera location. Candidate targets P must not be contained in
the composite surface map, and must lie within camera travel
limits.

The first term favors scene points that lie near the imaging
apparatus (criterion 6). Since the range to unmapped scene
points is not known, the value R (P) must be estimated from
depth and gradient information in the composite surface map
(criterion 4). The second term biases the choice of target 1o
scene points which lie near the current fixation point (criterion
1). This tends to minimize short-term large camera
movements. The third term ensures that an evolving surface
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description will tend to develop outward (‘‘centrifugally’’)
from the point of departure (criterion 7). Criterion 8 is met by
choosing the next fixation point so as to uncover as much as
possible of the currently unknown part of the visual field. This
also helps to minimize the total number of camera movements.

4.2. Surface estimation

This step concerns the process of orienting cameras so as
to bring the projection of the desired point of fixation to the
center of each image and estimating the surface in the vicinity
of the point of fixation. Once again, it will be useful to review
some results about biological vision before we present our
computational model.

4.2.1, Physiological vergence. Most work in biological
vision of interest here has been concerned with modeling eye
vergence movements in response to changes in the visual field.
Biological vergence movements are traditionally decomposed
into four components [Scho83]: disparity vergence, which is
affected directly by binocular disparities, is probably the
dominant component; accommodative vergence, which takes
into account the observed image blur to determine vergence
movements; tonic vergence, due to the effects of muscular
tonus; and proximal vergence which is due to psychological
expectation. From a computational viewpoint, only the first
two components are of interest here. Tonic vergence reflects
the tendency of an alert individual, in the absence of visual
stimulation, to move the eyes to a convergent resting state.
The fourth component, proximal vergence, is based on the fact
that humans typically expect a familiar object to be of a
particular size. When a similar object is recognized, distance
is inferred from the apparent size of the object and involuntary
vergence movements tend to verge the eyes to that distance.

The objective of the disparity-vergence system is to attain
fixation by reducing disparities near the image center to zero,
thereby allowing binocular fusion to take place. Krishnan and
Stark [Kris77] present a system mode! of the disparity-
vergence component, which accepts a disparity signal as input,
and produces vergence control signals as output. Their goal is
to model the dynamics of biological vergence. Computer
simulations demonstrate the agreement of the model with
empirical ~ physiological data. No interaction  with
accommodation is used in this model, and they do not discuss
the means by which the disparity signal might be derived from
a stereo pair of images.

Hung and Semmlow [Hung80) describe an analytical
model which integrates accommodation and disparity VETgence
subsystems. Their purpose is again to develop a model which
agrees with experimental physiological data. Image blur and
disparity each serve as stimuli which drive the accommodation
and vergence control signals. They also do not discuss the
means by which the blur and disparity signals might be derived
from a stereo pair of images.

Sperling [Sper70] presents a model for fixation, based on
the interactions of vergence, accommodation, and binocular
fusion. His is an “‘energy’’ model, in which each of these
three visual information sources contributes a separate
component based directly on the visual input. Both vergence
components, disparity vergence and accommodative vergence,
are incorporated into the model.



This model differs from others in that it considers fusion
as a separate visual cue. Binocular fusion is a cortical
phenomenon which depends on disparity. Physiologically,
fusion is possible only when disparities are sufficiently small
so that stereopsis can take place.

The model is formulated such that three independent
variables representing vergence (v), accommodation (a), and
fusion (u) are varied so that the following criterion function is
minimized:

gW,a,u)
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The multipliers w;(x,y) represent appropriate weighting
functions, and are negative where appropriate.

The first term encourages agreement among depth
estimates obtained individually from the vergence,
accommodation, and stereopsis  processes. This is
accomplished by a convex-upward (‘‘bowl-shaped’’) energy
function which assumes a minimum value when all three
estimates are identical, and increases in value otherwise. The
second term provides a measure of the goodness of vergence,
and is discussed in Section 2.2. This term should be a
minimum when both image centers are in registration. The
function w, (x,y) gives greater weight to the image centers
than to the periphery. Sperling assumes symmetric vergence,
without loss of generality.

Sperling defines the third, or fusion, term identically to
that of vergence, with a single difference: the summation is
performed only over foveal areas for visual targets within
Panum’s fusional area. He proposes that the summation be
performed only over the images of particular objects having
sufficiently small disparities. The function w, is intended to
incorporate such target masking. The last term, for
accommodation, is based on the degree of image blur. This is
accomplished by using derivatives to estimate the high-
frequency content in the images, as was discussed in Section
2.3. The multiplier w, (x,y) weights this term relative to the
others, and typically weights the image center higher than the
periphery. This term should be at a minimum when both
images are in sharpest focus.

The variables v, a, and u can be taken to represent the
state of the fixation system. While the intent is that these state
variables are varied smoothly until a minimum is found in the
above equation, Sperling specifies system dynamics based on a
gravimetric analog so that the system can also come to rest at a
local minimum. This means that the same external stimulus
can cause different system states, depending on previous visual
stimuli. This agrees with physiological phenomena; examples
of multistability abound in everyday life. This can occur, for
example, whenever we see a partially reflective surface, look
through a wire grid, or encounter the ‘‘wallpaper illusion.”
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4.2.2. A computational model for surface estimation. The
biological models discussed above are clearly not intended for
surface estimation. Indeed, these models consider only point
operations (such as disparity computation), rather than
emerging surface characteristics. (This is similar to most work
on computational stereo, wherein point disparities alone are
used without consideration of surface characteristics, as
discussed in Section 2.1.) As a result, many issues relevant to
surface reconstruction are unaddressed or unresolved. For
example, the question of occlusion from one eye is never
raised.

Nevertheless, the modeling of interaction among different
cues is extremely pertinent for the integration of information
derived from these cues. The model of Sperling is perhaps the
most comprehensive in this regard and could serve well as a
basis for the specification of a computational system. Our
model is quite similar to the Sperling model; the major
difference is that surface estimates are retained and treated as a
separate state variable. The goal is to minimize the following
criterion function of vergence (v), left and right focus (a;, and
ag, respectively), and the surface s

gWv,ar,ar,s)
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The first term is again intended to ensure agreement among the
different depth estimates at the point of fixation, and is defined
as

g, ar,ap)=wrr 1R;(ar) —Ra(ag)!
+wry R (ap) —R, ()|

+wrs 1R;(aL) —Rs(s)]
where R; maps its argument to a depth value.

The second term measures similarity of the two image
centers. This corresponds to Sperling’s term for vergence, but
we suggest the normalized cross-correlation measure for
registration. The third term computes the goodness of stereo
fusion in terms of the smoothness of the computed surface,
rather than in terms of intensity differences among
corresponding pixels related by a fixed disparity value. The
operator C computes coarseness of the surface s. The fourth
term, for focus, is similar to Sperling’s accommodation term,
except that we use the gradient norm instead of the Laplacian
to measure image sharpness.

When the above criterion function is minimized for a
newly selected target point, the result is final selection of a
point of fixation, extraction of sharp images, and an estimation
of a local surface patch derived from stereo analysis.

The independent wvariables may again be seen as
representing the state of the surface-estimation system. Rather
than specify system dynamics analytically, as is the case for
the Sperling model, we propose the algorithmic selection of
new states for the variables, as will be described in the next
section, The motivation for this is occlusion avoidance. The



Sperling model, for example, specifies that the independent
variables vary smoothly as the system seeks equilibrium. It is
possible that a satisfactory equilibrium point does not exist,
according to this formulation, when occluding objects are
present in the visual field.

After a local surface patch has been estimated, this is
integrated with a composite surface description. The evolving,
global surface map is a product of the aggregation of many
such local patches.

5. INTEGRATION ALGORITHM

In this section we describe an algorithm for partially
achieving the integration described in the previous two
sections. Both components of the active surface-reconstruction
paradigm, target selection and surface estimation, are
described. Its implementation (Section 6) demonstrates
dramatic improvements in estimated surfaces over those
possible without such interaction.

Before proceeding further, we note some salient
differences between the surface-estimation model proposed in
Section 4.2.2 and the algorithm presented. First, the algorithm
does not seek to minimize the proposed criterion function
explicitly through slow, smooth changes of the independent
variables, as was the case in the Sperling formulation. For our
model, dynamics are specified implicitly in the surface-
reconstruction algorithm so that the independent variables are
systematically chosen, leading to a (possibly local) minimum
of the criterion function in a stepwise fashion.

Also, while the algorithm integrates vergence and
accommodation cues directly, it does not integrate the surface
smoothness. For the given criterion function of surface-
estimation (Section 4.2.2), this amounts to the omission of the
variable s from the first term, and leaving out the third term
entirely. Equivalently, the algorithm divides the step of
integrated surface estimation into two separate steps: fixation
and surface estimation (see algorithm below). These will be
described separately below. In the future, we plan to extend
this algorithm to integrate the fixation and surface-estimation
steps to more properly represent the integration paradigm.

We now present the dynamic surface-reconstruction
algorithm at a high level. The following paragraphs elaborate
on the individual steps of the algorithm.

Step 1: Visual target selection.

The goal of this step is the selection of a new candidate
scene point at which to attempt fixation, based on the current
surface map and imaging parameters. As described earlier
(Section 4.1.2), this algorithm utilizes proximity measures to
choose a target which is optimum with respect to a criterion
function.

In addition, this step examines the depth map for
occlusion information, so that the system does not attempt to
fixate a scene area which is known to be occluded. Before
atternpting to find the next point of fixation, scene areas of
occlusion are found by projecting currently accumulated
surface estimates onto the image planes of both cameras
(Figure 3). If the projections of two surface patches onto the
right (Jeft) image are contiguous, while the projection of the
same patches onto the left (right) image plane are not

SURFACE-RECONSTRUCTION ALGORITHM

Repeat until entire scene has been mapped o
1. Select target based on current global scene description
2. Fixate
2.1 Aim both cameras at target
2.2 Repeat until both image centers show the same
scene area in focus
2.2.1 Obtain range estimates using focus for
both cameras
2.22 If range estimates from focus and
vergence do not agree, aim cameras at scene
point indicated by one focus estimate
2.3 Vary vergence to register image centers
3. Perform local surface estimation
3.1 Derive a set of depth estimates for stereo
3.2 Invoke stereo with initial depth estimates
3.3 Merge the resulting surface patch with an evolving
composite surface map

K

Box B

(a) Stereo cameras

distance
A A
B B

(b) Left image plane  Right image plane

Figure 3: Occlusion detection from 3D surface estimates.
The top view of a stereo imaging arrangement is shown in (a).
Because of the location and orientation of box B, its left
surface is not visible to the right camera, and part of box A is
hidden. To locate occlusion regions, the 3D surface
description projected onto the left and right image planes.
Projections of A and B onto the left image are disjoint (b),
whereas the projections of A and B onto the right image are
contiguous. Such a condition indicates the existence of an
occlusion.

contiguous, then the intervening region of the left (right) image
is assumed to be occluded. Points in these occluded scene
areas are not selected as targets.
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Rather than evaluate the criterion function for potential
targets directly, the system calculates the value of the function
for points on the edge of the surface map since depth
information is available only for points on the surface map.
After a criterion minimum is found, the system selects a view
orientation past the edge of the surface map, estimates depth
for this scene area, and aims the cameras at that point.
Typically, the resulting new camera orientations will extract
new parts of surfaces that overlap partially with the current
global surface map.

Step 2: Exploratory fixation.

The fixation process uses depth estimates from both focus
and vergence. Each camera in turn uses focus to obtain a depth
estimate for the scene point visible at the image center. From
the knowledge of the current imaging geometry, the locations
of the corresponding 3D points in the scene are determined for
each camera. The method for obtaining depth estimates from
focus was described in Section 2.3, If the depth estimates from
focus and vergence differ substantially, the system assumes
that an occlusion is present. The system must then take steps
to rotate both cameras to one side of the edge discontinuity.

After all three range estimates are in agreement, a
registration process is performed. The vergence angle is varied
slightly in search of a maximum in a normalized cross-
correlation criterion function (Section 2.2.2). Since this step
results in a small camera motion which does not typically
affect the image sharpness, the new camera configuration
minimizes all terms of the criterion function except the third,
and achieves fixation.

Step 3: Local surface estimation.

After obtaining an estimate of the distance to the point of
fixation, images are extracted for use by stereo. The system
then varies focus again to obtain a coarse grid of depth
estimates to be used by the stereo process. These estimates
need only to be accurate enough for stereo to receive
appropriate search windows along the epipolar lines of the
images.

The stereopsis process accepts the initial surface
estimates and produces a surface patch about the point of
fixation as described in Section 2.1. We used a modified
version of the stereo algorithm reported in [Hoff871. The
derived surface patch will be for a part of the scene which is
common to the visual fields of both the left and the right
cameras.

The resulting surface patch is now merged with the
cumulative surface map. When the current imaging geometry
is known, this involves simple rigid rotations and translations
of 3D surface patches to a home coordinate system. Since the
newly obtained surface patches typically have partial overlap
with previously mapped scene areas, the surface should
smoothly extend beyond previously mapped parts.

6. IMPLEMENTATION AND RESULTS

First we describe briefly the Ul imaging system, which
permits automated stereo image acquisition under computer
control. Next we present details and results of our algorithm as
implemented on this system.
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6.1. The UI Imaging System

Two high-resolution CCD video cameras, atop a stereo
platform, are used to obtain image pairs. The orientation of the
platform and the vergence angle of the cameras are controlled
through the use of high-precision stepper-motor positioners.
Four independent rotational units are used for tilt, pan, and
vergence movements, yielding four degrees of freedom for
camera orientation. Motorized zoom lenses are utilized,
having focal lengths which range from 17.5 to 105 mm,
yielding a 6 zoom ratio. The lens settings of zoom, focus, and
aperture are driven by a DC-motor controller.

Camera orientations and lens settings are determined by
the host workstation, a Sun Microsystems 3/160, which also
controls image acquisition and performs most image
processing. Images are digitized to 512 x 512 pixels of 8 bits
each. Although the cameras can verge independently, we
utilized only symmetric vergence, so that the point of fixation
was always directly in front of the camera platform. This was
done for ease of algorithm implementation, and should not
cause loss of generality of the methods employed.

Currently, extensive calibration procedures have not been
completed. To derive a mapping from focus settings to depth,
a test object was placed at a sequence of known distances from
one camera. The maximum of the focus criterion function was
found for each distance, and least squares methods were used
to fit a model based on the lens equation to these data. A few
control points were used for initializing pan, tilt, and vergence
angles. The stepper motors and position controller have
proved to yield highly repeatable results. Stepper motor
resolution ranges from 0.01° / step for vergence control to
0.001° / step for pan control.

6.2. Implementation Details

The present implementation comprises several
independent software modules, which correspond to Steps 1
through 3 of the surface-reconstruction algorithm given in the
previous section. The system can run autonomously, or the
user can invoke individual modules directly (as was done for
the results presented here).

In our current implementation, the stereo module requires
parallel focal axes. After fixation, therefore, the camera
vergence angle is reduced to zero before extracting final stereo
images. (The current stereo module is being modified to
accept nonzero vergence angles, so this will not be necessary
in the future.) We shall continue to refer to the prior point of
fixation as such, even though the cameras are now actually
fixated at infinity.

6.3. Experimental Results

We now describe a single run of the algorithm, using the
scene depicted in Figure 4. The vertical axes of the cameras are
assumed to be aligned, so that their optical axes are always
coplanar. The focal axes are initially parallel.

Figure 5 shows the initial stereo image pair of this scene,
consisting of a vertical barrel next to a rectangular box, both
resting on a flat table top and in front of a rear wall. The two
images overlap only to a small extent because of the large
baseline used (0.28 m). Notice that the scene point which
projects onto the center of the left image is occluded from the
view of the right camera. This starting point was chosen for



Back wall
16m |189m [29m
Camera system
Figure 4: Top view of imaging environment (not to scale).

The stereo camera platform appears at the lower portion of the
figure. Scene objects and a wall are near the top of the figure.
The dimensions are shown for a world-coordinate system with
origin at the center of the platform.

illustrative purposes, so that a description of the fixation
process about an occluding surface could be described initially.

After system initialization, the fixation process begins.
Both lenses are zoomed to the maximum focal length, and the
left camera computes a depth estimate along its optical axis.
Among the possible focus settings, a search is made for the
setting which causes a maximum in the criterion function for a
small (48 x 48) window in the image center. Several levels of
search are used, beginning with a very coarse search in which a
few focus settings are equally spaced over the entire focus
range, and narrowing the search space until acceptable depth
accuracy is reached.

After the depth estimate is obtained, the system attempts
to fixate that scene point by panning the camera platform and
causing the cameras to verge (rotate) inward. This leads to the
right camera’s view of the desired scene point being obstructed
by the barrel; by using focus changes to estimate the range
along the optical axis of the right camera, the system detects
this sitnation. The 3D location of the occluded point is
estimated from the left camera’s depth estimate and from
knowledge of the imaging geometry, and is stored for future
use.

The system reacts by attempting to fixate the nearer point,

ie., the scene point corresponding to the center of the right
image. The platform and cameras are rotated so that both
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cameras aim at this point, and a depth estimate from focus is
obtained with the left camera to verify the distance. Because
the depth estimates are very close, and agree with the depth
calculated from the known wvergence angle, the system
performs a registration process to increase the accuracy of the
vergence angle. As the vergence angle is changed by small
amounts, small windows at the image centers are compared
using a normalized cross-correlation of those windows. The
system then selects the best vergence setting, ant the resulting
fixated images, still at maximum zoom, are shown in Figure 6.

The system then causes the lenses to return to their
shortest focal lengths, with the resulting images shown in
Figure 7. The system is now ready to present these images to
the stereo module. But since our current stereo module expects
parallel focal axes, the camera vergence angle is reduced to
zero before extracting final stereo images.

To get an initial surface estimate for the stereo algorithm,
a 10x10 grid of coarse depth estimates is derived from focus
for both the left and right images, as described in algorithm
Step 3. After the grid is derived, the algorithm continues:

¢ Find the grid location corresponding to the point of fixation.

e Find the largest rectangular set of grid points which contain
this fixation point, and which have the same depth estimate.

e Mask out all grid points outside this window, to serve as an
indication that no stereo correspondences are to be considered
for this portion of the image.

o Replace all grid points within this rectangle with the more
accurate depth estimate obtained during the process of fixation.

The stereo module is then invoked, with these depth
points as initial estimates for corresponding scene regions.
The resulting depth map, referenced to the coordinate system
of the left camera, is shown in Figure 8.2

The next step is to select a new fixation point and
appropriate camera orientations, so that the scene description
can be extended. As described earlier, this module examines
the border of the surface map, and selects an edge point which
is optimum with respect to target-selection criterion function.
For this case the optimum edge point lies along the left edge of
the surface map, corresponding to the left edge of the barrel.
The system then makes the assurmption that this surface
extends smoothly to the left. It selects a pan angle designed to
permit overlap of new surface patches with the current surface
map (approximately 1°), and extrapolates a depth value for that
viewing direction based on nearby points in the depth map.
This pan angle and depth value determine the new 3D target,
which the system will now attempt to fixate.

The cycle now proceeds as described in Section 5. The
system attempts to fixate the new scene point, based on depth
estimates from focus and vergence. As before, the left camera
is aimed at a scene point not visible at the right camera. But
the system compares this scene location with its internal
surface map, and detects the occlusion before focusing the

2 Although the stereopsis algorithm produces actual 3D depth points as
output, for display purposes we have shown a map of the disparities, which
are reciprocally related to depth. This is to demonstate that curved
surfaces have actually been extracted; when the actual depth values were
plotted, the resulting surface appeared flat because the total difference in
depth for the barrel (approximately 7 ¢m) was a very small percentage of
the depth range of the scene.



right camera. The system rotates again to the left, and no
occlusions are detected this time. A scene point located on the
rear wall is fixated, and stereo images are extracted. The rough
grid of initial depth estimates this time provides a valid
estimate only for a small region about the fixation point. The
resulting incremental depth map is smaller, and is shown
merged with the previous depth map in Figure 9.

The algorithm proceeds in this fashion, incrementally
building up the global surface map from small patches derived
by the stereo module. After six separate fixations, the resulting
surface appears as shown in Figure 10. The predicted depths
agree favorably with known object distances.

Finally, we highlight the importance of integration as
advocated in this paper by comparing the results of this
algorithm with output from the same stereo module when no
effort is made to provide accurate initial depth estimates.
Instead of providing depth estimates based on other cues, a
frontal surface was supplied as the initial estimate to the stereo
algorithm for the same scene in Figure 7. The initial depth
estimate was a frontal surface located at 2.9 m from the
cameras. As can be seen from the resulting surface map
(Figure 11), reliable disparity estimates are produced only for
scene locations near this depth.

7. SUMMARY

We have argued that to obtain surface maps of large
scenes having large depth ranges, individual depth cues such as
stereo disparity, camera vergence, and focus are not sufficient
by themselves; rather they should be used in a tighty
integrated mode where they complement each other’s strengths
to define a more powerful and complete mechanism for surface
estimation. We have also discussed the importance of dynamic
selection of camera orientations based on the evolving scene
description. This amounts to integrating image acquisition
with image analysis for surface estimation. We have
demonstrated through experimental results that integration
leads to significant improvements in the quality of surface
maps over those obtained from individual cues.
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