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Abstract

Establishing correspondences between images of the same
scene is one of the most challenging and critical steps in motion
and scene analysis, Part of the difficulty is due to a wide variety of
three-dimension structural discontinuities and occlusions that occur
in real world scenes. This paper describes a computational
approach to image matching that uses multiple attributes associated
with a pixel to yield a generally overdetermined system of con-
straints, taking into account possible structural discontinuities and
occlusions. In the algorithm implemented, intensity, edgeness, and
cornemess attributes are used in conjunction with the constraints
arising from intraregional smoothness, field continuity and discon-
tinuity, and occlusions to compute dense displacement fields and
occlusion maps at pixel grids. A multiresolution multigrid struc-
ture is employed to deal with large disparities. Coarser level attri-
butes are obtained by blurring the finer level attributes. The algo-
rithms are tested on real world scenes containing depth discontinui-
ties and occlusions. A special case of two-view matching is stereo
matching where the motion between two images is known. The
general algorithm given here can be ecasily specialized to perform
stereo matching using epipolar line constraint,

1. INTRODUCTION

To estimate the 3-D motion and structure of objects from an
image sequence, it is often necessary to establish correspondences
between images. This paper presents an approach to matching two
images of a scene that enforces similarity of matched multiple low
level features as well as structural smoothness of the displacement
field, while allowing for occlusions and discontinuities. This
matching enables the analysis of motion parameters and structure
of the scene from two or more images [Weng87].

Previous techniques for general two-view matching roughly
fall into two categories: continuous and discrete.

(1) Continuous approaches. Though the approaches in this
category compute image plane velocity field instead of performing
explicit matching between features, the computed velocity field
amounts to image matching. Optical flow is computed based on
gradient of intensity function (e.g., {Hom81], [Nage86]) or spa-
tiotemporal variation (e.g., [Heeg87]). The intensity constraint used
by gradient based approaches is a lineadr equation in the two com-
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This equation is insufficient to determine the two components of
vector (o, B). A variety of smoothness constraints are proposed 1o
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solve this underdetermined problem. A typical one is minimizing
[J1Va 21 VBI2dudy proposed by Hom and Schunck. Since
this isotropic smoothness constraint is invalid across the image of
occluding edges, Nagel and his colleagues introduce controlled
smoothness constraint with the goal of smoothing along the edge
direction at edge points, and smoothing isotropically at points hav-
ing small gradient [Nage86]. This type of methods is commonly
called (intensity) gradient based methods.

(2) Discrete approaches. The techniques of this category
employ discrete features as tokens that are to be matched. Features
used for matching include points, edges, lines, and other aspects of
the scene structure.

Continuous approaches usually compute optical flow field
along a pixel grid. There is no need for explicit feature extraction
and matching. These approaches can potentially derive dense depth
maps, however, they face the following problems: (1) The existing
approaches resort to smoothness constraint 1o make the underdeter-
mined problem solvable. When discontinuities occur in the velocity
field, severe errors occur. (2) Since the motion is small, the magni-
tude of displacement vectors is also small. The results can be
easily contaminated by pixel level perturbations. (3) The assump-
tion that the intensity is constant for the same object patch in
different images is not strictly true. (4) The approach needs well
behaved and well textured intensity surfaces.

Discrete approaches allow either small motion or large motion
corresponding to short or long range process. Therefore, accurate
estimation of motion parameters and structure of the scene is possi-
ble under a relatively large motion. Discrete approaches do not
suffer from the problem of varying image intensity for continuous
approaches, since the existence of the discrete features is relatively
more stable than intensity values. The intensity surfaces need not
be smooth. However, these approaches also have problems: (1) It
is very difficult to reliably match discrete features between two
images. (2) Since the features are generaly sparse, only sparse
depth data can be obtained. This makes it harder to estimate sur-
faces. (3) Features may be detected in one image but not in the
other, e.g., due to occlusion. This creatcs more problems of
mismatches. (4) To make matching possible, usually various
smoothness constraints are used which may be invalid at occlusion
and motion boundaries.

In this paper, we present a new approach to image matching
that uses multiple attributes to yield an overdetcrmined system of
matching constraints. This not only helps to combat noise in the
images, but, more importantly, it also accommodates, to certain
degree, possible changes in image intensity due to changes in view-
ing position, lighting, shading and reflection. A multi-resolution
multi-grid computational structure is employed to deal with rela-
tively large motions. We also address the problems of discontinui-
ties in displacement field, and occlusion. The algorithms presented



in this paper compute the displacement field along dense pixel gtid
as well as occlusion maps. To test the performance of matching,
the motion parameters and the structure of the scene are computed
[Weng88a] (Weng88b] from the matches obtained.

The next section discusses our approach. Section 3 discusses
the algorithms. The experimental results are presented in Section
4. Section 5 presents concluding remarks.

2. AN APPROACH TO IMAGE MATCHING

It is desirable to have a dense distribution of matches to
avoid arifacts in the estimates of scenc structure. Since there may
not be a large number of distinguishable feature points in the
image, displacements across images, or marches, may have to be
computed at pixels on a dense grid. We will use the term dis-
placement field to refer to the result of image marching.

2.1 Image Attributes

Figure 10 shows a pair of monochrome images of a labora-
tory scene taken at two different positions. In general, the intensi-
ties of the corresponding points are not exactly the same in the two
images, even under the same lighting conditions, They are gen-
erally close, except in some special cases, ¢.g., large reflection
from a glossy surface. We call this intensity similarity criterion,
However, this criterion docs not uniquely determine the matching,
even with the constraint that the displacement field is smooth in a
region of the same intensity (see Figure. 1).

A much more reliable structural information for maiching is
sharp transitions of intensity — edges. As shown in Figure 1(b),
the uncertainty is reduced if we match edges. The criterion that a
given edge should be matched to another edge with similar edge-
ness measure i8 called edgeness similarity criterion.

However, intcnsity similarity and edgencss Similarity are not
sufficient to obtain matches, For example, when a closed contour
is rotated as shown in Figure 2, the intensity similarity, edgeness
similarity, and smoothness are not sufficient o determine the
correct matches. Even if the variation of displacement ficld is
minimized along the contour, the resulting displacement ficld is not
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(2) (b)

Figure 1, (a)! A point can be incorrectly matched 1o any
point with similar intensity. (b): The use of edges reduces the
uncertainty in matching.

Figure 2. Intensity and edges are not sufficient to yield a
correct match. (a): A closed contour is rotated. The thin line
segments show true displacement. (b): The displacement vec-
tors determined from local edge flow.
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correct [Hild§3], The problem here is that the similarity of contout
shape is neglected. In general, the shape of the local intensity sur-
face is a usctul feature for matching. However, this shape varies
significantly from image to image. Matching comer points unambi-
guously determines the displacement vector. In general, a right
comer (the point at the apex of a right angle along an edge con-
tour) should result in a high absolute measure of cornemess rela-
tive to comers of other angles. The sign of a corner should be such
that it can distinguish a comer of a white rectangle on a black
background from that of a black rectangle on a white background.
Since the shape of iso-intensity contour is very unstable in a flag
region where intensity gradient is small, the cormerness measure-
ment at a flat point should be low, In other words, we should
assign high comemess measure only to those comners that are on
edges. The criterion that 4 point should be matched to a point with
similar cornerness measure is called cornerness similarity criterion.

The algorithm described in this paper uses the intensity, edge-
ness and comnemess attributes for matching. The framework of our
approach is such that additional attributes (e.g., color) could be
casily included.

2.2 Relationships of Attributes

A corner point is isolated — it constitules a zero dimensional
point set. Matched corners constrain the displacement vector com-
pletely and without uncertainty. Edges usually form a contour — a
one-dimensional point set. Locally, if a section of edge is matched
with another edge, the displacement vector, starting from an edge
point, can terminate at any point on the matched edge. This uncer-
tainty is commonly referred to as the apermure problem. Similarly,
a point can be matched to any point in a region having the same
intensity (see Figure 1). This is a two-dimensional aperture prob-
fem.

Although matched comers completely determine the displace-
ment vector, corners alone are not sufficient to determine the entire
displacement field, First, we cannot guarantee thal COmers are
available everywhere in images. Second, clusters of corners arc
difficult to match without additional support from other attributes.
For similar reasons, comers and edges may not suffice without the
intensity information,

Together, intensity, edgeness and cornerness altributes con-
strain the matching process and generally provide overdetermina-
tion to obtain matches. The overdctermination also provides a
mechanism to accommodate small differences in attributes between
two images.

2.3 Intra-regional Smoothness and Occlusion

Regions with uniform intensity often result from the same
continuous surface. This suggests that a uniform region will have
a uniform displacement field. We call this intra-regional smooth-
ness criterion. The objective of this criterion is to fill in displace-
ment information in those areas where no signilicant intensity vari-
ation occurs. We cannot gencrally assume smoothness across
different regions.

To correctly match two images, those scenc regions which are
occluded in one or the other image must be identified. Occlusion
occurs when a part of scene visible in one image is occluded in the
other by the scene itself, or a part of the scene near the image
boundary moves out of field of view in the other image. If occlu-
sion regions are not detected, they may be incorrectly matched to
nearby regions, interfering with the correct matching of these
regions. To identify occlusion regions, we define two occlusion
maps, occlusion map 1 showing parts of image 1 not visible in
image 2, and similarly occlusion map 2 for image 2 (in Figure 3,
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Figure 3. Determining occlusion maps (see texy).

black areas denote occlusion regions). We first determine the dis-
placement field from image 2 to image 1, without occlusion infor-
mation. The objective of this matching process is to compute
occlusion map 1. This matching may “‘jam’’ the occluded parts
of image 2 (e.g., the right-most section) into parts of image 1 (e.g.,
the right-most section). This generally will not affect the computa-
tion of occlusion map 1. Those areas in image 1 that have not been
matched (in Figure 3, no arrows pointing to them) are occluded in
image 2 and are marked in occlusion map 1. Once occlusion map 1
is obtained, we then compute the displacement field from image 1
to image 2 except for the occluded regions of image 1. The results
of this step determine occlusion map 2.

2.4 Multi-Resolution Multi-Grid Structure

Large disparities are crucial for general image matching, since
matches may be spatially well separated. However, to find such
matches requires that we know approximate locations of the
matches, since otherwise multiple matches may be found. One
solution to this problem is image blurring to filter out high spatial
frequency components. However, blurred intensity image has very
few features left, and their locations are unreliable. Therefore,
instead of blurring the image first and then measuting edgeness and
cornerness, we blur the original edgeness and corncrness images
(called attribute images here), Since the comerness measure has a
sign, nearby positive and negative comers may be blurred 1o give
almost zero values, which is the same as the result of blurting an
area without corners. We therefore separate positive and negative
comers into two attribute images. Blurring is done for positive and
negative images separately. Such blurred edgeness and cornerness
images are not directly related to the blurred intensity images.
They are related to the strength and frequency of occurrence of the
corresponding features, or 1o the texiure content of the original
images. While texture is lost in intensity images at coarse levels,
the blurred edgeness and cornerness images retain a representation
of texture, which is used for coarse matching. The intraregional
smoothness constraint at coarse levels applys to blurred uniform
texture regions (with averaged intensity). When the computation
proceeds to finer levels, the sharper edgeness and cormnemess meas-
ures lead to more accurate matching. Therefore, in general the
algorithm applys to both textured or non-textured surfaces.

At a coarse resolution, the displacement field only needs to be
computed along a coarse grid, since the displacement computed at
a coarse resolution is not accurate, a low sampling rate suffices. In
the approach described in this paper, the coarse displacement field
is projected to the next finer level (copied to the four correspond-
ing grid points) where it is refined. Such a refinement continues
down to finer levels successively until we get the final results at
the original resolution. The computational structure and data flow
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Figure 4. Computational structure and data flow

used in this process are shown in Figure 4.

2.5 Limitations

It should be noted that our approach is not intended for situa-
tions where matching criteria involve image interpretation. For
example, the approach will not always correctlly match to satisfy
high-level, context sensitive criteria, such as illustrated in Figure 5.

Another limitation of our approach is that corners may not
always correspond 1o physical points in the scene. One reason is
that two spatial lines that do not intersect in space may intersect in
images. Since at coarse levels corners are blurred to contribute 10
texture measure, a small portion of non-physical comers or edges
will not cause severe problems at coarse levels. The influence of
the non-physical corners is expected to be overcome by other attri-
butes and intra-regional smoothness. At finer levels, the weight for
comerness should be reduced since comerness is not as rcliable as
edgeness and intensity and the strength of comerness at finer levels
begins to dominate the influence of intensities. A similar but
slower reduction is performed for edgeness weights relative to the
intensity weights.

3. ALGORITHM

In this section, we present the matching algorithm we have
developed to implement the approach outlined in the previous sec-
tion. Let the position of a point in an image be denoted by
u=(u, v). Let the intensity of the first image be denoted by i(u)
and that of the second image by i’(u). The objective of the algo-
rithm is to compute displacement field d(u) such that i(u) and
i’(ut+d) are the projections of the same scene point in the two
images.
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Figure 5. Ambiguity in finding displacement field for texiure-
less surfaces. (a) and (b): Two views of two textureless sur-
faces. (¢) and (d): Two different 3-D interpretations. (e): With
more context, understanding of the scene helps to select the
correct interpretation. The results of our algorithm will general-
ly agree with the interpretation of (¢). However, if the sur-
faces are textured, the cases (c) and (d) can be distinguished
by the algorithm.

The intensity images are first filtered with a small (3 by 3)
low pass filer to suppress gray level noise. The intensity is scaled
linearly such that the minimum and maximum intensity values are
equal to 0 and 255, respectively. The values of edgeness and
comerness discussed below are also normalized.

3.1 Edgeness and Cornerness

To get a continuous measure of edgeness, we use the magni-
tude of gradient. Some points need to be considered here. First,
the magnitude of the gradient of the same scene point is not gen-
erally the same in the two images. Such differences may cause
errors in the computed displacement field. Second, small gradients
are more susceptible to intensity noise and are not reliable. Third,
different scenes have different ranges of gradient magnitude.
Therefore we need to normalize and transform the magnitude of
gradient properly to edgeness. We define the edgeness measure
range from 0 to 255. The magnitude of gradient is transformed by
a normalization function f of the kind shown in Figure 6. It has
two transition points xo and x;. From x=0 to x=xq f(x)=0 to
suppress noise. From x=xgy to x=x;, f(x) increases from =0 to
=255 gradually and smoothly. The smooth transition interval
[xpx;] allows continuous variation of edgeness for gradients of
moderate magnitudes. For x>x,, f(x)=255, 10 limit strong edges
and relatively enhance the moderate edges. The values of xg and x,
are determined automatically through an analysis of the histogram
of gradient magnitudes such that the fractions of the pixels in edge-
ness images that have values below f(x,) and above f(x;) arc
maintained at predetermined levels. This normalization function is
important for the algorithm to adapt to different images. The edge-
ness is thus defined by

e) = f(Vi(u) 3.1

where Vi(u) is the gradient of intensity i (u) at point u and f is
one of the normalization functions shown in Figure 6.
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Figure 6. Two normalization functions for edgeness

We now define the comemess measure at a point. We con-
sider positive and negative cornerness separately. Roughly speak-
ing, the cornerness at a point u measures the changes of the direc-
tion of gradient at two nearby points, weighted by the gradient at
the point. These two points, ut+r, and u+r, (see Figure 7) are
located on a circle centered at u. The radius of the circle is deter-
mined by the level of resolution. We choose r, and r, such that
the directional derivative along the circle reaches minimum and
maximum values (see Figure 7). Let a=Vi(u+r,), b=Vi(u+r,),
and angle(a, b) be the angle from a to b measured in radians
counter-clockwise, ranging from —x to %t. The closer the angle is to
7/2, the higher the positive comemess measure. In addition, the
measure should be weighted by the magnitude of gradient at the
point u. That is, the positive cornemess at u is defined by

{e (w(1~langle(a, b)(2/m)~-11)  O<angle(a, b)sr

= 3.2
p () 0 otherwise 32

Thus, the positive cornerness is normalized to range from 0 to 255.
Similarly, if angle(a, b) is negative, we have negative comemess
measure 7 (u):

( {e (w(1-langle(a, b)2/m)+11)  —n<angle(a, b)<Q
n(u)=

3,
0 otherwise 3.3)

3.2 Orientation and Displacement Smoothness

Smoothness constraints impose similarity of the displacement
vectors over a neighborhood. In addition to considering the
smoothness of the overall displacement vectors, we separately con-
sider the smoothness of the orientation of these vectors. The rea-
son for emphasizing orientation smoothness is that (1) the orienta-
tion of the displacement vectors projected from a coarse level is
generally more reliable than their magnitude, and (2) at a fine level,
the local attribute gradient perpendicular to the displacement vector
can easily lead the displacement vector in a wrong direction if
orientational smoothness is not emphasized.

Clearly, smoothness constraint should be enforced only over
points whose displacements are related, e.g., over adjacent points
from the same surface. To selectively apply the smoothness con-
straint to two points, we use the similarity of intensities and the
similarity of available displacement vector estimates at the two
points. We represent the displacement vector filed in the vicinity
of a point d(uy) by a vector ~Ei-(uo). It is intended to approximate
the displacement filed within the region that uy belongs to. In the
implementation, g is computed as:
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Figure 7. Definition of cornerness (see text).

Y wEw—i(up), dw—d(ug) d(u)

O<hu-ugli<r

dwo= (3.4)
where O<llu-ugli<r denotes a region around ug, and w(, )
denotes the weight assigned to the displacement vector at a neigh-
boring point u. In digital implementation, {u} are adjacent grid
points (8-connectivity). The weight is a function of intensity
difference i(u)—i(ug), and displacement vector difference llu—uoll.
The objective that d(ug) represent the neighboring displacement
vectors of the region of ug suggests the following requirements on
the weight.

(1) The weight is large if intensity difference is small. We
assume that small intensity difference is observed when two neigh-
boring points u and up belong to the same region, and therefore,
their displacement vectors should be similar.

(2) If u and ug have similar intensity but the corresponding
displacement vectors are different, the weight should remain small.
This case occurs when the displacement field is projected from a
coarse level to the finer level. Two adjacent points with the same
intensity may take quite different initial displacement vectors if
they belong to different grid points at the coarse level.

(3) If u and ug have different intensities their displacement
vectors are very different, the weight should be extremely small to
suppress the influence of u on d{ug).

Let n;=li(w—i(uy)! and Mg=d(w)-d(up). A definition of
weight that satisfies the above criteria is as follows:

4
e+ 1 (1+1mg 1)
where € is a small positive number to reduce the effects of noise in

intensity and prevent denominator from becoming 0, and ¢ is a
normalization constant which makes the sum of weights equal to 1:

> ww—i(ug), du)—d(ug)=1

Octlu—uyll<r

wn; Ny = (3.5

(3.6)
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Thus, the weight is automatically determined based on inten-
sity difference and displacement difference. The smoothness con-
straint imposes similarity of d(ug) and H(uo). The larger the
difference in intensity, the more easily the fields for two adjacent
regions can differ. If two regions get different displacements after
some iterations, the quadratic term |I'r1d||2 results in very small
weight to reduce their interactions. On the other hand, the dis-
placement vectors in the same region will be similar since the
corresponding weight is large. Since intensity difference is usually
much larger than the magnitude of displacement difference, In; | is
not squared in (3.5) (unlike ny), otherwise the weight will be too
sensitive to small changes in intensity. The weights, thus, implicitly
take into account discontinuities. The registered value a(uo) allows
us to perform matching using uniform numerical optimization
despite the presence of discontinuities. This is discused below.

3.3 Minimizing Residuals

Any given displacement vector field leads to measures of
similarity, or residual errors, between the attributes of estimated
corresponding points. The residuals for various attributes are:

(1). Residual of intensity:

r:(u, d)=i’(u+d)—i (w) 3.7
(2). Residual of edgeness:

r, (u, d)=e’(ut+d)—e (u) (3.8)
(3) Residual of positive cornermness:

rp (u, d=p (utd)-p (w) 3.9)
(4) Residual of negative cornerness;

7, (u, d)=n"(u+d)—n (u) (3.10)
(4) Residual of orientation smoothness:

r, (u, dy=d(uyxd(u)/ Il d(u) @3.11)
(5) Residual of displacement smoothness:

r4(u, dy=dw)-d(u) (3.12)

We want to minimize the weighted some of squares of residuals:
T, Ay, rlu, d+h, ru, d)
d
+A, r,‘z(u, d)+A, roz(u, d)+Ay rdz(u, d)} = min (3.13)

where A, A,, A, A, and A, are weighting parameters that are
dynamically adjusted at different resolutions. Let
P2 (P Pas P Pus Pos Fa) (3.14)

With previous estimate of the displacement vector d (initially d is a
zero vector at the highest level), we need to find increment &g
Expanding r(u, d+34) at 8,=0, we have (suppressing variable u for
conciseness):

r(d+dy = r(d)+§%(:—)8d+o(ll 8411) & r+J dg+o (113411 (3.15)

where



i’ 3i’
u v
du av
E
ou av (3.16)
J=Br(d)= on’ on’
ad ou v
~d /il d,/id
1 0
. 0 ]

v
where (d,, d,)=d, the partial derivative 9 Genotes the partial
* ou

derivative of i’(u, v) with respect to ¥ at point u+d, and so on.
Let

A = diag {1, Aoy Ay My Ay Ag) (3.17)

We want to find 8,4 such that the sum of squared residuals in (3.13)
at the point is minimized. Neglecting high order terms and minim-
izing NAGr+J 8y !, from (3.15) we get the formula for updating d:

8q = —(J"ALY A r(u) (3.18)

The partial derivatives in the entries of J are computed by a
finite difference method. Let s denote the distance between two
adjacent points on a grid, along which finite deference of the attri-
butes is be computed, assuming a unit spacing between adjacent
pixels. Then s should vary with the resolution. In addition, s
should also also vary with successive iterations within a resolution
level. A large spacing is necessary for a rough displacement esti-
mate when iterations start at a level. As iterations progress, the
accuracy of the displacement field increases and s should be
reduced to measure local structure more accurately. The mask to
compute finite differences is shown in Figure 8, where spacing s at
level [ is equal to 2’ for the first one-half number of iterations at
level /, and is reduced by a factor of 2 for the second half, except
for /=0. At the original resolution (/=0), the spacing is always
equal to 1, since no smaller spacing is available on pixel grid.

3.4 Recursive Blurring

The structure of the computation and data flow is shown in
Figure 4. The original images are first filtered by a 3x3 low pass
filter to remove gray level noise. Then four attribute images pairs
are generated (intensity, edgeness, positive cornerness and negative
comnemess). The attribute images are extended in four directions to
provide context for the points that are near the image border. The
extension is made by repeating the border row or column. We use
recursive blurring (to be specified below) to speed up computation.
Only integer summations and a few integer divisions are needed to

[ [ [ /
2] [o] [2] 7

_

(o] <
-]

Figure 8. Mask for

computing derivatives.

(2/s)

Figure 9. Recursive blurring
and limiting (see text).
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perform such a simple blurring. The blurring of level /+1 is done
using the corresponding attribute image at level /; For each pixel at
level /+1, its value is equal to the sum of the value of four pixels
at level ! divided by m (m=4 for intensity, m=3 for edgeness and
m=2 for comerness). The locations of these four pixels are such
that each is centered at a quadrant of a square of sxs (See Figure
9). s is equal to 2 at level /. Therefore, the blurred intensity
image at level / is equal to the average over all pixels in a square
of size sxs. To enhance sparse edges and corners, m is smaller
than 4 for edgeness and cornemess. So, the results can be larger
than 255. If this occurs, the resulting value is limited to 255. This
multilevel recursive normalization is useful for the algorithm to
adapt to different scenes.

3.5 Motion and Depth from Displacement Fields

To test the performance of the matching algorithm, motion
and structure parameters are estimated from the matches obtained,
assuming the scene is rigid. First, the matching algorithm is
applied to compute displacement from image 2 to image 1, from
which occlusion map 1 is computed. The occlusion maps are
filtered by 3x3 median filters to remove single-pixel occlusion
regions and noise due to pixel grid. Then, the displacement from
image 1 to image 2 is computed using occlusion map 1, The
occluded points ug are assigned the vector H(uo) in (3.4) as the dis-
placement vector. Algorithms to compute motion parameters and
the 3-D position of the points ([Weng88a], [Weng88b]) can be
used to compute the motion between two images and the depth of
the scene (since we have very dense displacement field!). The
algorithm first solve for motion parameters and 3-D positions of
the points using a closed-form solution {[Weng88a], assuming the
scene is rigid. The results are then optimized [Weng88b] so that
the discrepancies between the projection of the computed 3-D
structure and the observed projection is minimized.

The matching algorithm can be easily modified 1o solve the
problem of stereo matching. For example, for horizontal epipolar
line matching, v=0. The minimization problem in (3.13) then
becomes a one variable problem.

4. EXPERIMENTAL RESULTS

Experiments have been conducted on a variety of real world
scenes, A CCD monochrome video camera with roughly 512 by
512 resolution is used as image sensor. The focal length of the
camera is calibrated but no corrections are made for camera non-
linearity. The camera takes two images at different positions for
each scene. The number of resolution levels used is equal to 7. 20
iterations are performed at each level.

First, we present the results for the pair of images shown in
Figure 10, which is called Mac scene. Significant depth discon-
tinuities occur in the scene. Books and Manuals lie irregularly on
the table. Such a surface is very difficult to estimate accurately
from sparse depth data. The largest disparity is about 80 pixels for
this pair of 512 by 512 images. The two edgeness images are
shown in Figure 11. The two positive cornemess images are
shown in Figure 12. Blurred atiribute images are shown in Figure
13. A sample of dense displacement ficld at level 1 is shown in
Figure 14. Examing by flickering between two images on a Sun
workstation, 95 percent of the vectors shown in Figure 13 appear
to have no visible errors. The occlusion map 1 is shown in Figure
15. The occlusion maps are to detect relatively large occluded
regions (more than one pixel wide) and not to show occlusion
boundaries which can be easily detected by analyzing discontinui-
ties in the constructed depth maps.



The algorithms presented in [Weng88a] and [Weng88b] are
employed to compute the motion parameters and the 3-D structure
of the scenc from the computed displacement field. The 3-D sur-
face is shown as the value of 1/(z), where z is the depth, as inten-
sity image in Figure 16 and is plotted in Figure 17. Those surfaces
agree fairly well with those observed in the real scene. It is worth
mentioning that the complicated surfaces on the manuals and books
on the front table are well recovered. The parameters of the motion
of the scene relative to the camera are shown in Table 1. The
translation direction and rotation axis are represented by three com-
ponents, (up, right, forward). Since no attempt is made to obtain
ground truth, we do not know the accuracy of those motion param-
eters. However, we can measure the discrepancies between the
projection of the recovered 3-D position of the points and the
observed projection. Let us define the (standard) image error as

n
“ [ S dHdP2n
i=1

where n is the number of points (number of displacement vectors)
in an image, d; is the distance between the projection of the com-
puted 3-D point i and its observed projection on image 1, and 4
is analogous distance for image 2. If the displacement field is not
correct, i.e., it does not correspond to the motion of a rigid scene,
the image error will be large no matter how good the performance
of the algorithm for motion and structure estimation is. On the
other hand, if the errors in the displacement field do not violate the
rigidity constraint (rigidity constraint means that the field should
correspond to the motion of a rigid scene), the image error can still
be small provided the performance of the motion and structure esti-
mation algorithm is good. As shown in Table 1, the image error is
within half of the pixel width. Thus, the performance of the algo-
rithm for motion and structure estimation is good, and the matching
algorithm at least does not make large errors that violate rigidity
constraint. The displacement field could still conceivably make sys-
tematic errors so as 1o depict a rigid scene, although different than
the real one. But such systematic errors are unlikely except those
caused by the existence of multiple interpretations shown in Figure
5 (all those interpretations satisfy the rigidity constraint).

To compare our algorithm with one that uses only intensity
gradients, we set the the weights for edgeness and comerness, A,,
A, and X, to zero. The resulting depth from the matches is shown
in Figure 18, which can be seen to contain many errors. The result
without using occlusion map is shown in Figure 19, from which
we can see severe errors occur around the occluded regions. Figure
20 shows two images of another scene (called Chair scene) and the
samples of the corresponding displacement field at level 1. The
results of motion estimation are given in Table 2.

image error = 4.1

5. SUMMARY AND DISCUSSION

An approach is presented to compute displacement ficld
between two images of a scene taken from different view points.

Table 1
Data and Results for the Mac Scene
Translation 0.016152  0.990948 0.133270
Rotation axis | 0.966355 0.175804  -0.187752
Rotation angle 1.611214°
Image error 0.000326
Pixel width 0.000938
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Table 2
Data and Results for the Chair Scene
Translation 0.094865  -0.057348  0.993837
Rotation axis 0.708815 0.406920 0.576193
Rotation angle 0.125879°
Image error 0.000316
Pixel width 0.000938

The approach employs multiple attributes of the images 1o yield an
overdetermined system of matching constraints. The continuities
and discontinuities in displacement field, and occlusion are taken
into account to analyze complicated real world scenes.

In the current implementation of the algorithm, intensity,
edgeness, and comerness are used as matching attribute. The algo-
rithm does not require extensively textured images. It allows
discontinuities and occlusions in the scene. From the matches
obtained, dense 3-D surface and occlusion maps are computed for
real world scenes, assuming the scene is rigid. The discrepancy
between the projection of the computed 3-D points and the
matched image plane points (standard image error) is about one
half of pixel width.

To compare the algorithm presented with others, let us first
make some observations about the role of J given in (3.16). The
top four rows of J determine the matching, and the bottom three
rows determine the intra-regional smoothness. At a point of image
i’(u) where there are strong transitions of intensity, edgeness and
cornermness, or subset of them, the first four rows of J are relatively
strong and determine the optimal 84 to update displacement vector.
The bottom three rows are relatively week and are used to adjust
the intraregional uniformity of the field in the neighborhood. At a
point where the intensity, edgeness and comerness are flat, the top
four rows of J are weak and the three bottom rows play a major
role. The displacement is updated such that it is consistent with

the neighboring displacement vector of the same region. The first
four linear equations of
r(d+8,) = r(d)+§%(§l 84 =0 (3.19)

yield four linear equations in term of two components of 84, which
determine four lines in the space of 8y. Since the measurements
are noisy, those lines are unreliable and generally do not intersect
at a single point. A weighted least squares solution determines a
point that minimizes the weighted sums of squared residuals.

Existing gradient-based methods use only one linear equation
based on intensity similarity. Namely, only the first of the four
lines is used. This line does not determine a point in the plane (an
underdetermined system). The methods resort t0 smoothness con-
straint. However, many incorrect solutions that satisfy the intensity
constraint can also be very smooth, and very often can be even
smoother than the cotrect solution. In other words, there is a huge
class of solutions that satisfy, numerically, both the linear equation
and the smoothness constraint but may be very different from the
correct solution. The final solution obtained by these (usually itera-
tive) methods can be any one in this class. Therefore, these
methods do not give correct solution in general. This partially
accounts for the problems of gradient methods.

In our approach, the system is generally overdetermined and
smoothness is used mainly for filling in uniform regions. Though
the available information for matching is just intensity images, the
matching criteria here are based on not only individual intensity
values, but also relationships between those intensity values.



Edgeness and comerness characterize some meaningfu! local rela-
tionships at a point. These attributes provide additional information
that is needed to guide the matching. More importantly, they lead
to a generally overdetermined system based solely on attribute
matching, instead of regularization (smoothness). Such overdeter-
mination significantly improves the stability of the solution.
Smoothness plays a major role only inside uniform regions.

Since intensity, edgeness and cornerness used in our algo-
rithm are poini-based local properties, the algorithm is pixel
oriented: simple, uniform and easy to implement on certain parallel
architectures. This is an advantage over symbolic matching
approaches that use high level primitives and provide only sparse
matches.
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Figure 13. Blurred attribute images. Upper two rows: level 6;
Left pair in the first row: blurred intensity image pair; Right in
the first row: blurred edgeness image pair; Left in the second
row: blurred positive cornerness image pair; Right in the
second row: blurred negative cornerness image pair; Lower

two rows: level 5 in the same arrangement as the upper two
TOws.

Figure 10. Two views of a laboratory scene (the Mac scene)
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Figure 12. Two positive comerness images for the Mac scene.

Figure 14. Samples of the computed displacement field at lev-

el 1 for the Mac scene, superimposed on the blurred extended
intensity image.

72

Figure 15. Computed occlusion map 1 for the Mac scene.
Black areas in occlusion map 1 indicate that the corresponding
areas in image 1 (the first image in Figure 1) are not visible in
image 2 (the second image in Figure 1).



Figure 16. The computed 3-D surface (1/z) shown as intensity Figure 17. Perspective plot of computed 3-D surface for the
image for the Mac scene (from the viewpoint used for image Mac scene (from the viewpoint used for image 1).

1).

Figure 18. Performance using only intensity: The computed Figure 19. Performance without identifying occlusion regions:
3-D surface (1/z) shown as intensity image for the Mac scene The computed 3-D surface (1/z) shown as intensity image for
(from the viewpoint used for image 1). the Mac scene (from the viewpoint used for image 1).

Figure 20, Two images of the Chair scene, and samples of the
computed displacement field at level 1 from the first image.
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