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Abstract

This paper presents a clustering algorithm for dot pat-
terns in n-dimensional space. The n-dimensional space of-
ten represents a multivariate (nf -dimensional) function in ans-dimensional space (ns + nf = n). The proposed algo-
rithm decomposes the clustering problem into the two lower
dimensional problems. Clustering in nf -dimensional space
is performed to detect the sets of dots in n-dimensional space
having similar nf -variate function values (location based
clustering using a homogeneity model). Clustering in ns-
dimensional space is performed to detect the sets of dots in
n-dimensional space having similar interneighbor distances
(density based clustering with a uniformity model). Clusters
in the n-dimensional space are obtained by combining the
results in the two subspaces.

1. Introduction

Clustering explores inherent tendency of a dot pattern
to form sets of dots (clusters) in multidimensional space.
The multidimensional space represents parameters of some
phenomenon, for example, image texture may contain over-
lapping multiple textures having inherent densities (one sub-
space) with different colors or shapes of texels within each
texture (another subspace). This paper presnts a new cluster-
ing method that separates the ns-dimensional spatial (e.g.,
location and density) and nf -dimensional intrinsic proper-
ties represented by the dot distribution (ns+nf = n). In this
sense it differs from many of the existing methods (single
link, complete link, minimum spanning tree, Zahn’s clus-
tering, nearest neighbors, Voronoi neighbors, K-means and
mode seeking [6, 3, 2, 11, 10, 1, 8, 9, 5, 4]). The clustering
problem is decomposed into two lower-dimensional prob-
lems. The dot pattern in n-dimensional space is projected�This research was supported in part by the Advanced Research Projects
Agency under grant N00014-93-1-1167 administered by the Office of Naval
Research

onto the two subspaces. The specific choice of subspaces
is determined by the application at hand. Clustering is per-
formed in each subspace and the results then combined.

Thus, clustering is viewed as an extension of the prob-
lem of segmenting a noisy multivariate multidimensional
function. A location uniformity model for clustering is used
in ns-dimensional subspace (modeling uniform sampling)
to detect clusters with similar interior distances between
dots (density based clustering), and a homogeneity model
for clustering is used in nf -dimensional subspace (modeling
constant multivariate function values) to detect clusters with
similar locations of dots (location based clustering). Sim-
ilarity is defined as the Euclidean distance, e.g., between
two interior distances or two locations. The two models are
used in the corresponding two subspaces and the links and
dot locations are clustered using a new method. Overall
clustering is carried out by clustering the two dot patterns
independently inns and nf dimensional subspaces and then
combining the results. Hierarchical organization of clusters
is obtained by (1) varying the degrees of uniformity " and
homogeneity � to create several clusterings and (2) capturing
the relationship among the detected clusters as a function of
uniformity " and homogeneity �. The proposed clustering
method can be related to the graph theoretic algorithms.

2. Uniformity and homogeneity based cluster-
ing

First, a mathematical framework is established in sec-
tion 2.1. n-dimensional (nD) points are projected onto
the two lower dimensional subspaces giving rise to thens-dimensional (nsD) sample points and nf -dimensional
(nfD) attribute points. Clustering of sample points is pro-
posed with the uniformity model in section 2.2 (uniformity
of sample point locations or homogeneity of interior link
distances). Clustering of attribute points is proposed with
the homogeneity model in section 2.3 (homogeneity of point
locations). A procedure for hierarchical clustering is out-
lined in section 2.4. The result is exclusive (nonoverlapping
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clusters), intrinsic (no a priori knowledge), agglomerative
(grouping points) and a graph based hierarchical classifica-
tion of a dot pattern.

2.1. Mathematical formulation

An nD dot pattern is defined as a set of points pi with
coordinates (x1; x2, � � �,xns, f1; f2, � � �, fnf ), which repre-
sent a discrete sample point xi =(x1; x2, � � �, xns) and a
discrete attribute point f(xi) =(f1; f2, � � �, fnf ) in the twons and nf dimensional subspaces. f is defined as a mappingf : <ns �! <nf at sample points xi.

Dissimilarity measure d of two dots p1 and p2 is defined
by the Euclidean distance of the minimum path between p1

and p2 (denoted as link lp1;p2 ), i.e., d(lp1;p2) = k p1 � p2 k.
Given sample points xi, a link is assigned to every pos-

sible pair of sample points. All links over given sample
points xi create a complete graph H = flxi1;xi2 = lkg. Let
us suppose that all links from a complete graph H are par-
titioned into nonoverlapping clusters of links CLm, wherem is the index of a cluster. The uniformity " of one cluster
of links CLm (denoted as CL"m) is valid if for all links lk
in the cluster CL"m the following is true:

(1) A connected graph G(CL"m) � H is created, i.e., if
every sample point is a vertex in the graph then a path exists
between any two vertices in the connected graph.

(2) Distances d(lk 2 CL"m) associated with links lk
vary by no more than ", i.e., j d(l1 2 CL"m)) � d(l2 2CL"m)) j� ". We can write that all links lk 2 CL"m
must have link distances within an " wide distance inter-
val d(lk) 2 [dmidp(CL"m) � "

2 ; dmidp(CL"m) + "
2 ], wheredmidp(CL"m) is the average value of the maximum and min-

imum link distances from the connected graph G(CL"m);dmidp(CL"m) = 1
2(maxfd(lk)g + minfd(lk)g) (see Fig-

ure 1).
Having the final partition of all links lk into clusters

of links CL"m with "-uniformity, we can obtain the final
partition of sample points xi into clusters of sample pointsCS"j with "-uniformity based on the priority of minimum
average link distances within clusters of links (the minimum
spanning tree of clusters of links CL"m).

Let us suppose that all attribute points f(xi) are par-
titioned into clusters of attribute points CFj, where j is
the index of a cluster. The homogeneity � of one clusterCFj (denoted as CF �j ) is defined as the maximum distance
between any pair of attribute points from the cluster, i.e.,k f(x1 2 CF �j ) � f(x2 2 CF �j ) k� �. We can also write
that any attribute point f(xi) 2 CF �j must have a loca-
tion within an nfD sphere f(xi) 2 Sph(Center = fmidp;radius = �

2 ), where fmidp has the coordinates of the mid-
dle attribute point from the two attribute points f(xq) andf(xt) being the most distant; k f(xq) � f(xt) k= maxfkf(xi1) � f(xi2) kg and fmidp = 1

2 (f(xq) + f(xt)). The
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Figure 1. Uniformity and separation of clus-
ters of links.

Uniformity and separation of clusters of links are illustrated
on the axis of link distances d(lk). Clusters of links with"-uniformity contain links with link distances occupying "
wide interval on the axis of link distances (CL"1; CL"2; CL"3).
Separation of any pair of clusters of links, which share at
least one common sample point xi by their links (CL"1 ,CL"2), is defined as �s = minfj d(lk 2 CL"1) � d(lk 2CL"2) jg. There is no separation defined between clusters of
links, which do not share at least one common sample point
(CL"1; CL"3).�-homogeneity of a cluster is illustrated in Figure 2.

Definition 1 "-uniformity and �-homogeneity based dot
pattern clustering.

Given the uniformity parameter ", the homogeneity pa-
rameter � and nD dots pi = (xi; f(xi)), ("; �) based dot
pattern clustering partitions nD dots pi into a set of clustersC";�t such that the clusters C";�t (t is the index of a cluster)
satisfy the following properties:

1. "-uniformity of sample points xi.
2. �-homogeneity of attribute points f(xi).
3. Cluster intersection; C";�t1 \C";�t2 = 0 for all t1 6= t2.

4. Cluster union; [C";�t = [pi.
2.2. Clustering of sample points xi

The clustering method for unknown clusters of links hav-
ing a large separation of link distances with respect to their
interior uniformity is proposed first in 2.2.1. Statistical de-
scriptors of clusters are introduced to cope with unknown
clusters of links having a small separation of link distances
with respect to their interior uniformity in 2.2.2. Descriptors
and a sequential decrease of the number of links reduce com-
plexity of the proposed clustering method. The clustering
algorithm is provided at the end in 2.2.3.
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Figure 2. Homogeneity and separation of
clusters of 2D attribute points.

All attribute points from one �-homogeneous cluster are
within a sphere having center at fmidp and radius �

2 (seeCF �
2 ). Separation �f of a pair of clusters is defined as the

minimum distance between two attribute points each from
one cluster; �f = minfk (f(xi1) 2 CF �

1 ) � (f(xi2) 2CF �
2 ) kg.

2.2.1 The clustering method for modelled clusters

Let us suppose that M nonoverlapping "-uniform clusters
of links fCL"m; m = 1; ::Mg are created from a complete
graph H = flkg over sample points xi. Let us assume
that for all pairs of clusters of links CL"m1; CL"m2 sharing
at least one sample point xi by their links, the separation�s of link distances is more than their interior uniformity "�s > "; (see Figure 3). This scenario represents a modelled
dot pattern.

An unknown cluster of links CL"m can be created from
any link lk1 2 CL"m by grouping together all links lk
satisfying the inequality j d(lk1) � d(lk) j� ". The "-
uniform cluster CL"m is identical with the 2"-uniform clus-
terCL2"lk1

created from the link lk1 such that dmidp = d(lk1);j dmidp � d(lk) j� " and dmidp was defined in section 2.1.
Starting from individual links lk,

clusters of linksCL"m can be created by grouping
those links lk1 and lk2 together, which (1) are
connected (lk1 and lk2 share one common pointxi) and (2) lead to identical 2"-uniform clustersCL2"lk1

= CL2"lk2
= CL"m.

Let us order clusters of links CL"m = flkgMmk=1 based
on their average link distances (first moments d1stm(lk 2CL"m) = 1Mm PMmk=1 d(lk 2 CL"m)) from the shortest av-
erage link distances to the longest average link distances;d1stm(lk 2 CL"1) � d1stm(lk 2 CL"2) � ::: � d1stm(lk 2CL"M ). Then clusters of sample points CS"j are uniquely
derived from the cluster of links CL"m by using minimum
spanning tree of CL"m with the link distances equal tod1stm(lk 2 CL"m). Thus links lk 2 CL"1 from the ordered
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Figure 3. Link distances for CL"m and CL2"lk .
An "-uniform unknown cluster of links CL"m with a large
separation of link distances with respect to its interior uni-
formity �s > " contains the same links as any created
2"-uniform cluster CL2"lk from a link lk 2 CL"m (seeCL2"lk = CL"1).

set of CL"m will assign labels to sample points xi first, then
links lk 2 CL"2 for the remaining unlabelled sample points,
etc.
Proposed clustering of sample points xi
(1) Create 2"-uniform clusters of connected links CL2"lk for
each link lk. (2) Compare all pairs of 2"-uniform clustersCL2"l1 and CL2"l2 , which started from links l1; l2 sharing one
sample point xi. (3) Assign links into clusters of linksCL"m
based on comparisons. (4) Map uniquely already created
clusters of links CL"m into clusters of sample points CS"j .

These four steps of the proposed clustering method for a
modelled dot pattern (�s > ") are applied to any dot pat-
tern having unknown clusters of links with large or small
separation with respect to their interior uniformity; �s > "
or �s � ". Performance improvement of the method is
achieved by using cluster descriptors for the comparison of
2"-uniform clusters in the step 2. Exhaustive comparison
of two clusters is replaced by comparing two values (de-
scriptors), which leads to a reduction of the computational
complexity. Reduction of the computational complexity is
improved even more by sequentially decreasing the number
of the processed links.

2.2.2 Complexity reduction and performance improve-
ment

A. Descriptors of clusters CL2"lk :
A simplified comparison of two 2"-uniform clusters CL2"lk
can be performed using descriptors D(CL2"lk ) derived from
link distances d(li 2 CL2"lk ). The descriptor was selected
as the mean estimator (first moment) of the correct link
distances �m within a cluster CL"m; D(CL2"lk2CL"m ) =d1stm(li 2 CL2"lk ) = 1Mlk PMlki=1 d(li 2 CL2"lk ) / �m.

Analysis of clustering accuracy using descriptors for



�s > " and �s � " led to simplified comparisons of
pairs of clusters CL2"l1 and CL2"l2 in the form of inequal-
ities j D(CL2"l1 ) � D(CL2"l2 ) j� " rather than equalitiesD(CL2"l1 ) = D(CL2"l2 ) if two links l1; l2 are going to be
assigned to the same cluster (cluster detection approach).
Inequalities improve the noise robustness of the method
(decrease probability of misclassification).
B. Number of links:
The number of processed links is decreased by merging links
in the order of the link distances d(lk) (from the shortest links
to the longest links) intoCL"m and deriving clusters of sam-
ple points CS"j immediately. No other links, which contain
already merged sample points xi 2 CS"j , will be processed
afterwards. When the union of all clusters of sample points
includes all given sample points ([CS"j = [xi) then no
more links are processed.

2.2.3 Clustering procedure

(1) Calculate link distances d(lk) for the complete graph H
over sample points xi.
(2) Order d(lk) from the shortest to the longest.
(3) Create 2"-uniform clusters of links CL2"lk for each indi-
vidual link lk such that d(lk) = dmidp � d(l1) + " of the
cluster CL2"lk .
(4) Calculate descriptors d1stm(CL2"lk ).
(5) Group together connected pairs of links lk1 and lk2

into a common cluster of links CL"m if j d1stm(lk 2CL2"lk1
)� d1stm(lk 2 CL2"lk2

) j� ".
(6) Assign those unassigned sample points to clusters CS"j ,
which belong to links creating clusters CL"m.
(7) Remove all links from the ordered set, which contain
already assigned sample points.
(8) Perform calculations from step (3) for d(l1) = d(l1) + "
until there are unassigned sample points.

2.3. Clustering of attribute points f(xi)
Clustering of attribute points is analogous to the cluster-

ing of sample points with replacing links by attribute point
locations. The clustering method for unknown clusters hav-
ing a large separation with respect to their homogeneity�f > � is derived first.
Proposed clustering for attribute points f(xi)
(1) Create 2�-homogeneous clusters CF 2�f(xi) for every at-

tribute point f(xi). (2) Compare pairs of clusters CF 2�f(xi).
(3) Assign attribute points f(xi) to clusters CF �j based on
comparisons.

Unknown clusters CF �j having a small separation with
respect to their interior homogeneity �f � � are tackled
by using descriptors of 2�-homogeneous clusters in the
step 2, which estimate the correct centroid value �j of at-
tribute points within a cluster CF �j ; D(CF 2�f(xi)2CF�j ) =

f1stm(f(xl) 2 CF 2�f(xi)) = 1Mf(xi) PMf(xi )l=1 (f(xl) 2CF 2�f(xi)) / �j . The clustering algorithm is provided next.
Clustering procedure
(1) Create 2�-homogeneous clusters CF 2�f(xi) for each at-

tribute point f(xi).
(2) Calculate descriptors f1stm(f 2 CF 2�f(xi)).
(3) Group together attribute points f(x1) and f(x2) into a
common clusterCF �j if k f1stm(f 2 CF 2�f(x1))�f1stm(f 2CF 2�f(x2)) k� �.

2.4. Hierarchical clustering

A hierarchy of clusters of dots C";�t is defined as a com-
bination of the hierarchy of clusters of links CL"m and the
hierarchy of clusters of attribute points CF �j for varying
uniformity and homogeneity parameters (", �). Clusters
of links or attribute points are organized hierarchically by
allowing the clusters only to grow for increasing parameter.

The hierarchy of clusters of linksCL"m and clusters of at-
tribute pointsCF �j is guaranteed by modifying link distances
and attribute points within created clusters at each parameter
value ("; �) to the first moments of link distances d1stm(lk 2CL"m) and attribute points f1stm(f(xi) 2 CF �j ) for per-
formed agglomerative clustering.

3. Performance evaluation

Theoretical and experimental evaluations are focused on
(1) clustering accuracy and (2) performance for real ap-
plications. Clustering accuracy is tested for (1) synthetic
(modelled) dot patterns and (2) standard test dot patterns
(80x, IRIS), which were used by several other researches to
illustrate properties of clusters (80x is used in [6] and IRIS
in [7, 6]). Experimental results are compared with four other
clustering methods (single link, complete link, FORGY and
CLUSTER). In addition, experimental performance of both
proposed methods is tested using dot patterns from [11] to
compare clustering results with the two related methods, the
Zahn’s clustering [11] ("-uniformity method) and the cen-
troid method [6] (�-homogeneity method). Experimental
results for real applications are conducted for dot patterns
obtained from botanical analysis of plants and image texture
analysis and synthesis.

From all aforementioned experiments we show only one
result of image texture detection to demonstrate an excep-
tional property of the proposed clustering method with re-
spect to all other known clustering techniques.

A synthetic image with three overlapping textures hav-
ing different densities of circles (texels) contains subset of
circles having different color. Created gray scale image is
shown in Figure 4 (top). The image was segmented and
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Figure 4. Image with overlapping transparent
textures.

Top - original synthetic image. Bottom - "-uniformity clus-
tering of a dot pattern obtained by taking centroid locations
of detected regions in the segmented synthetic image; clus-
ters are denoted by numerical labels (6 for large circles, 0 for
middle size circles and 26 for small circles) and are detected
at the uniformity value " = 0:1.

2D dots were obtained as centroids of detected regions. "-
uniformity clustering of a dot pattern provided separation
of the three different textures shown in Figure 4 (bottom).
The texture separation was successful despite partial oc-
clusion of circles an therefore irregularity of dot locations
obtained from segmented regions. Within each detected
texture a �-homogeneity clustering grouped together circles
with similar color.

4. Conclusions

We have presented a new hierarchical clustering method
that decomposes the n-dimensional clustering problem into
two lower dimensional problems. Decomposing allows us
to apply two different models to n-dimensional dots, the"-uniformity model in ns-dimensional subspace and the �-
homogeneity model innf -dimensional subspace (ns+nf =n). A new "-uniformity method for density based clustering
is proposed for nsD spatial points. The use of density allows
us to detect multiple interleaved noisy clusters that represent
projections of different clusters on transparent surfaces into
a single image. �-homogeneity clustering is proposed fornfD attribute points to detect intrinsic property represented
by dots.
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