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Abstract Dimensionality reduction has recently been ex-
tensively studied for computer vision applications. We
present a novel multilinear algebra based approach to re-
duced dimensionality representation of multidimensional
data, such as image ensembles, video sequences and volume
data. Before reducing the dimensionality we do not convert
it into a vector as is done by traditional dimensionality re-
duction techniques like PCA. Our approach works directly
on the multidimensional form of the data (matrix in 2D and
tensor in higher dimensions) to yield what we call a Datum-
as-Is representation. This helps exploit spatio-temporal
redundancies with less information loss than image-as-
vector methods. An efficient rank-R tensor approximation
algorithm is presented to approximate higher-order tensors.
We show that rank-R tensor approximation using Datum-
as-Is representation generalizes many existing approaches
that use image-as-matrix representation, such as generalized
low rank approximation of matrices (GLRAM) (Ye, Y. in
Mach. Learn. 61:167–191, 2005), rank-one decomposition
of matrices (RODM) (Shashua, A., Levin, A. in CVPR’01:
Proceedings of the 2001 IEEE computer society conference
on computer vision and pattern recognition, p. 42, 2001)
and rank-one decomposition of tensors (RODT) (Wang, H.,
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1 Introduction

Many computer vision applications require processing large
amounts of multidimensional data, such as face/object data-
bases for recognition or retrieval, video sequences for se-
curity and surveillance and 3D/4D CT/fMRI images for
medical analysis. The dimensions can be a mix of space and
time, e.g., a video sequence where two of the dimensions
are spatial and the third temporal. Datum is recognized as
a basic element of multidimensional data, for example, each
datum in a video sequence is a 2D image and each datum in
a 4D fMRI sequence is a 3D volume. As data size and the
amount of redundancy increase fast with dimensionality, it
is desirable to obtain compact and concise representations of
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the data, e.g., by identifying suitable basis functions for sub-
space representation. The process of finding a set of compact
bases and projections of the data on these bases as represen-
tation is referred to as dimensionality reduction.

Many computer vision applications require processing
large amounts of multidimensional data, such as face/object
databases for recognition or retrieval, video sequences for
security and surveillance and 3D/4D CT/fMRI images for
medical analysis. The dimensions can be a mix of space and
time, e.g., a video sequence where two of the dimensions
are spatial and the third temporal. Datum is recognized as
a basic element of multidimensional data; for example, each
datum in a video sequence is a 2D image and each datum in
a 4D fMRI sequence is a 3D volume. As data size and the
amount of redundancy increase fast with dimensionality, it
is desirable to obtain compact and concise representations of
the data, e.g., by identifying suitable basis functions for sub-
space representation. The process of finding a set of compact
bases and projections of the data on these bases as represen-
tation is referred to as dimensionality reduction.

Traditional methods for reducing the dimensionality of
image ensembles usually transform each datum (an image)
into a vector by concatenating rows (we call it Image-as-
Vector). One example of these methods is principal com-
ponent analysis (PCA), which has been widely used in
face representation (Sirovich and Kirby 1987), face recogni-
tion (Turk and Pentland 1991), and many other applications.
PCA is used to find a set of mutually orthogonal basis func-
tions which capture the largest variation in the training data.
The features are obtained by projecting each zero mean im-
age onto a p dimensional subspace, which can be obtained
by the singular value decomposition (SVD). Independent
component analysis (ICA) is another method used for im-
age coding. The ICA (Comon 1994) model is a generative
model, which describes how the images are generated by
a process of mixing a set of independent components. ICA
is very closely related to blind source separation (BSS) (Jut-
ten and Herault 1991). There are many other methods, such
as, minimum entropy coding (Barlow 1989) and sparse cod-
ing using simple-cell receptive field properties (Olshausen
and Field 1996). Recently a hybrid linear model (Hong et al.
2005) has been proposed for image representation. Tenen-
baum and Freeman (2000) presented a bilinear model for
separating the underlying two factors (so-called content and
style) of perceptual observations. Multilinear algebra has
recently received much attention in computer vision and
signal processing. High order singular value decomposi-
tion (HOSVD) was discussed in (Lathauwer et al. 2000),
and has been used in computer vision applications such
as face recognition (Vasilescu and Terzopoulos 2002) and
facial expression decomposition (Wang and Ahuja 2003).
It was shown in (Vasilescu and Terzopoulos 2003) that
the root mean squared error (RMSE) of the reconstruc-
tion for the same compression ratio is higher for HOSVD

using Image-as-Vector representation than PCA. All these
PCA- or tensor-based techniques adopt the Image-as-Vector
representation by concatenating image rows into a single
vector. One inherent problem of this representation is that
the spatial redundancy within each image matrix is not fully
utilized, and some information on local spatial relationships
is lost.

Some researchers in computer vision and machine learn-
ing have recently begun to treat an image as a matrix (we
call these methods Image-as-Matrix methods) (Shashua and
Levin 2001; Yang et al. 2004; Ye 2005). Shashua and Levin
(2001) proposed representing a collection of images us-
ing a set of rank-one matrices. Yang et al. (2004) recently
proposed a two-dimensional PCA (2DPCA) by construct-
ing an image covariance matrix using the original image
matrices. As noted in (Yang et al. 2004), 2DPCA-based im-
age representation is not as memory efficient as PCA since
2DPCA requires more coefficients than PCA. Ye (2005)
proposed a method called generalized low rank approxima-
tion of matrices (GLRAM). In contrast to PCA, GLRAM
projects the original data onto a (p1,p2)-dimensional space
such that the projection has the largest variance among all
(p1,p2)-dimensional spaces. We will show that all these
methods assume independency among all rows/columns of
each image, as a result of which they can not fully capture
pixel-pairwise redundancies. More importantly, it is hard
to generalize these methods to higher dimensional datasets
such as a collection of 3D volumes.

In this paper, we propose a tensor decomposition frame-
work for dimensionality reduction using a Datum-as-Is rep-
resentation. The datum can be a 2D image, or a 3D or
higher-dimensional volume. The advantages of our tensor
decomposition framework using Datum-as-Is representation
lie in the following three aspects.

• Capturing redundancies across different modes of data:
Elements in image rows or columns are often similar.
Using Datum-as-Is representation can not only capture
element-pairwise variations, but also row/column varia-
tions.

• Generalization: It is easy to generalize our framework to
higher-dimensional data, such as a collection of 3D vol-
umes. It will be shown that three existing image-as-matrix
algorithms are special cases of our tensor framework.

A recent independent work using a similar representa-
tion (Xu et al. 2005) showed that this can also avoid the
curse of dimensionality dilemma in image analysis. We also
proposed an out-of-core tensor approximation algorithm
using Datum-as-Is representation to handle large-scale mul-
tidimensional visual data in image-based rendering (Wang
et al. 2005).

The rest of the paper is organized as follows. We first
give a brief overview of multilinear algebra and the formu-
lation of rank-R approximation of tensors in Sect. 2. Then
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we describe two algorithms for this problem: generalized
rank-R approximation of tensors in Sect. 3 and rank-R ap-
proximation of third-order tensors in Sect. 4. The algorithms
are used for dimensionality reduction and feature extraction
in Sect. 5. In Sect. 6, we report experimental results on the
quality and computational complexity of the representation,
and its efficacy in object recognition. Conclusions are given
in Sect. 7.

2 Overview of Multilinear Algebra

In this section, we introduce the relevant preliminary mater-
ial concerning multilinear algebra. The notations we use are
described in Table 1.

A high-order tensor is denoted as: A ∈ R
I1×I2×···×IN .

The n-mode product of a tensor A by a matrix U ∈Jn×In ,
denoted by A ×n U , is defined by a tensor with entries:
(A ×n U)i1...in−1jnin+1...iN = ∑

in
ai1...iN ujnin . The scalar

product of two tensors A,B ∈ R
I1×I2×···×IN is defined as:

〈A,B〉 = ∑
i1

∑
i2

· · ·∑iN
ai1i2···iN bi1i2···iN . The Frobenius

norm of a tensor A ∈ R
I1×I2×···×IN is then defined as ‖A‖ =√〈A,A〉. The n-rank of A, denoted by Rn = rankn(A), is

the dimension of the vector space spanned by the n-mode
vectors. For example, an N th-order tensor has rank 1 when
it equals the outer product of N vectors U1,U2, . . . ,UN ,
i.e., ai1i2...iN = u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

, for all values of the indices,

written as: A = U(1) ◦ U(2) ◦ · · · ◦ U(N). Unfolding a tensor
A along the nth mode is denoted as uf (A, n) or A(n). The
unfolding of a third order tensor is illustrated in Fig. 1.

Two important properties can be observed from the un-
folding of a third-order tensor (e.g., an image ensemble by
representing each image as a matrix) in Fig. 1.

Observation 1 The unfolding matrices of an image ensem-
ble tensor are usually long, thin matrices. For example,
A(1) ∈ R

I1×I2I3 , with I1 � I2I3.

Table 1 Notation

Notation Descriptions

A,B, . . . tensor (calligraphic letters)

A,B, . . . matrix (capitals)

a, b vector (low-case letters)

A(i) unfolding tensor along the ith mode

Ai ith image

U(i) subspace matrix along the ith mode

N the order of a tensor

p the number of principal components

r the number of rank-one tensor bases

d the dimension of GLRAM

R the dimension of rank-R tensor approximation

Observation 2 The columns in A(1) correspond to the
columns of all images, the columns in A(2) correspond to
the rows of all images, and the rows in A(3) correspond to
images-as-vector.

Observation 1 is very useful for efficient implementation
of rank-R tensor approximation algorithm, while Observa-
tion 2 could help us better understand why our method can
capture more redundancies than image-as-vector methods.
We will elaborate on these in Sect. 3.

Like SVD for matrices, HOSVD has been recently devel-
oped for tensors (Lathauwer et al. 2000) as in the theorem
below.

Theorem 1 Any tensor A ∈ C
I1×I2×···×IN can be expressed

as the product:

A = B ×1 U(1) ×2 U(2) × · · · ×N U(N), (1)

with the following properties:

(1) U(n) = (U
(n)
1 U

(n)
2 . . .U

(n)
In

) is a unitary (In ×In) matrix.

(2) The subtensors Bin=α of B ∈ C
I
1 × I2 × · · · × IN have

the following properties:

• All-orthogonality: two subtensors Bin=α and Bin=β

are orthogonal for all possible values of n, α and β

subject to α 	= β: 〈Bin=α,Bin=β〉 = 0,when α 	= β ,
• Ordering: ‖Bin=1‖ ≥ ‖Bin=2‖ ≥ · · · ≥ ‖Bin=In‖ ≥ 0

for all possible values of n.

Therefore, computing the HOSVD of an N th-order ten-
sor leads to the computation of N different matrix SVDs of
matrices with size In × I1I2 . . . In−1In+1 . . . IN , 1 ≤ n ≤ N .

Fig. 1 Unfolding of a third-order tensor



220 Int J Comput Vis (2008) 76: 217–229

Fig. 2 HOSVD of a third-order
tensor

The HOSVD of a third-order tensor is illustrated in
Fig. 2.

Kofidis and Regalia (2002), Lathauwer et al. (2000),
Lathauwer et al. (2000) are good sources of details of mul-
tilinear algebra.

3 Generalized Rank-R Approximation of Tensors

3.1 Tensor Approximation Algorithm

Given a real N th-order tensor A ∈ R
I1×I2×···×IN , find a ten-

sor Ã ∈ R
I1×I2×···×IN , having Rank1(Ã) = R1,Rank2(Ã) =

R2, . . . ,RankN(Ã) = RN , that minimizes the least-squares
cost function

Ã = arg min
Â

‖A− Â‖2. (2)

The desired tensor is represented as

Ã = B ×1 U(1) ×2 U(2) × · · · ×N U(N) (3)

where U(1) ∈ R
I1×R1 , U(2) ∈ R

I2×R2 , . . . , U(N) ∈ R
IN×RN

and B ∈ R
R1×R2×···×RN . U(i) has orthonormal columns for

1 ≤ i ≤ N .
For image ensembles, we use third-order tensors, A ∈

R
I1×I2×I3 (I1 × I2 is the dimensionality of each image, and

I3 is the number of images). We also assume R1 = R2 =
R3 = R here for simplicity. Hence we name our approach
rank-R approximation of tensors.

From (2), i.e.,

f = ‖A−B ×1 U(1) ×2 U(2) × · · · ×N U(N)‖2. (4)

For given matrices U(1),U(2), . . . ,U(N), B can be ob-
tained by solving a classical linear least-squares problem:
B ×1 U(1) ×2 U(2) × · · · ×N U(N) = A. Since U(1),U(2),

. . . ,U(N) have orthonormal columns, we have B =
A ×1 U(1)T ×2 U(2)T × · · · ×N U(N)T . As stated in (Lath-
auwer et al. 2000), the minimization in (2) is equivalent to
the maximization, over the matrices U(1),U(2), . . . ,U(N)

having orthonormal columns, of the function

g(U(1), . . . ,U(N)) = ‖A×1 U(1)T × · · · ×N U(N)T‖2. (5)

We apply the alternative least squares (ALS) (Kroonen-
berg 1983; Lathauwer et al. 2000) to find the (local) optimal

Algorithm 1: Rank-(R1,R2, . . . ,RN ) tensor approximation

Data: Given A and R1,R2, . . . ,RN

Result: Find Un, (1 ≤ n ≤ N) and B.

Initialize U
(n)
0 ∈ R

In×Rn , 1 ≤ n ≤ N ;

while ∼ stop do

Ũ
(1)
j+1 = uf (A×2 U

(2)T

j ×3 U
(3)T

j × · · · ×N U
(N)T

j ,1);

U
(1)
j+1 = svds(Ũ (1)

j+1,R1);

Ũ
(2)
j+1 = uf (A×1 U

(1)T

j+1 ×3 U
(3)T

j × · · · ×N U
(N)T

j ,2);

U
(2)
j+1 = svds(Ũ (2)

j+1,R2);

· · ·
Ũ

(N)
j+1 = uf (A×1 U

(1)T

j+1 ×2 U
(2)T

j+1 × · · · ×( N − 1)U
(N−1)T

j+1 ,N);

U
(N)
j+1 = svds(Ũ (N)

j+1,RN);

B = A×1 U
(1)T

j+1 ×2 U
(2)T

j+1 × · · · ×N U
(N)T

j+1 ;

if (‖Bj+1‖2 − ‖Bj‖2 < ε) stop

end

solution of (2). In each step, we optimize only one of the
matrices, while keeping others fixed. For example, with
U(1), . . . ,U(n−1),U(n+1), . . . ,U(N) fixed, we project ten-
sor A onto the (R1, . . . ,Rn−1,Rn+1, . . . ,RN)-dimensional

space, i.e., U
(n)
j+1 = A ×1 U

(1)T

j+1 × · · · ×n−1 U
(n−1)T

j+1 ×n+1

U
(n+1)T

j × · · · ×N U
(N)T

j , and then the columns of U(n) can
be found as an orthonormal basis for the dominant subspace
of the projection.

The pseudo-code of the algorithm is described in Algo-
rithm 1. The “svds(A,R)” denotes the left eigenvectors of
matrix A corresponding to the R largest singular values.

3.2 Implementation issues

(1) Initialization: One issue in the implementation is the
initialization of the algorithm. In the original algorithm pro-
posed by Lathauwer et al. (2000), the values of U(n) ∈
R

In×Rn were initialized with the truncation of the HOSVD.
The columns of the column-wise orthogonal matrices span
the space of the dominant left singular vectors of the ma-
trix unfoldings A(n) (1 ≤ n ≤ N). While the computation of

HOSVD is very expensive (O(I1I2 · · · IN)), we use U
(n)
0 =

[IRn 0 ]T or U
(n)
0 = uniformly distributed random num-

bers (though columns are not necessarily orthonormal). Like
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many iterative search methods, empirically we have not seen
any major difference in the results obtained using these ini-
tializations (see Sect. 6.2). However, our initializations are
much simpler to compute than HOSVD.

(2) Efficient implementation Most of the time spent by
the algorithm is in the computation of eigenvectors us-
ing SVD. The time complexity of SVD on a r × c ma-
trix is O(rc min(r, c)). Therefore, the total time cost is
O(

∑
n InR

N−1 min{In,R
N−1}), (1 ≤ n ≤ N), which means

it is efficient for low-rank approximation, i.e., when R is
small. As R increases, the time and memory requirements
increase fast, making the algorithm inefficient for large R.
Because unfolded matrices are long and thin, as described
in Observation 1, we utilize a simple strategy that can im-
prove the efficiency. Suppose the SVD of A is USV T . To
avoid the large value of c, we exploit the fact that the eigen-
system of AAT is US2UT . Then we only need a subset of
the column vectors from the left singular matrix, U , of A.
Therefore, once we have obtained U from the eigensystem
of AAT , it is not necessary to compute V anymore.

3.3 Relationship with Existing Image-as-Matrix
Approaches

For image ensembles (third-order tensors), the relationship
of our tensor approximation algorithm with Datum-as-Is
representation and GLRAM by Ye (2005) is described in
the Theorem 2.

Theorem 2 The tensor approximation algorithm using
image-as-matrix representation in Algorithm 1 reduces to
the GLRAM algorithm (Ye 2005) when the tensor is pro-
jected onto only the first two subspaces, U(1) and U(2).

Proof Given a set of images, A1,A2, . . . ,AI3 , with size of
I1 × I2 each, the GLRAM algorithm (Ye 2005) is aimed
at finding transformation matrices U(1) and U(2) with or-
thonormal columns, and Mi which solve the minimization
problem:

min
U(1)∈R

I1×l1 :U(1)T U(1)=Il1

U(2)∈R
I2×l2 :U(2)T U(2)=Il2

Mi∈R
l1×l2

I3∑

i=1

‖Ai − U(1)MiU
(2)T ‖2

F .

It is shown in (Ye 2005) that for a given U(2), U(1) consists
of the l1 eigenvectors of the matrix

ML =
I3∑

i=1

AiU
(2)U(2)T AT

i (6)

corresponding to the largest l1 eigenvalues, and for a given
U(1), U(2) consists of the l2 eigenvectors of the matrix

MR =
I3∑

i=1

AT
i U(1)U(1)T Ai (7)

corresponding to the largest l2 eigenvalues.
A third-order tensor, A ∈ R

I1×I2×I3 , is formulated for
our tensor approximation algorithm using image-as-matrix
representation. Its rank-R approximation is represented as
A = B ×1 U(1) × 2U

(2) ×3 U(3). According to the property
of tensor product, i.e., A×mB ×n C = A×nC ×m B , where
B ∈ R

Jm×Im and C ∈ R
Jn×In , we have

A = (B ×3 U(3)) × 1U
(1) × 2U

(2) = C ×1 U(1) × 2U
(2) (8)

where C = B ×3 U(3). Our task is to find U(1) and U(2)

such that the projection of the tensor A to the two sub-
spaces has the minimum error of approximation in the least
squares sense. This corresponds to finding the maximum
Frobenius norm of the tensor C, i.e., ‖C‖2 = ‖A×1 U(1)T ×
2U

(2)T ‖2. Again we apply the ALS for the optimization,
i.e., we first fix U(2)T , and then solve for U(1) by solv-
ing the quadratic expression f = ‖C̃(2) ×1 U(1)T ‖2, where
C̃(2) = A × 2U

(2)T . Using the matrix formulation, we ob-
tain the unfolding matrix of C̃(2) along the second mode as
C̃(2) = U(2)T · A(2) = [U(2)T · AT

1 U(2)T · AT
2 · · ·U(2)T · AT

I3
]

since A(2) can be represented as [AT
1 AT

2 · · ·AT
I3

] ∈ R
I2×I1I3 .

C̃(2)T is the column-permuted version of the unfolding ma-
trix of C̃(2) along the first mode. Since column permutation
of a matrix does not change its left singular vectors, U(1)

can then be found from C̃(2), i.e., C̃(2)T = [A1 · U(2)A2 ·
U(2) · · ·AI3 · U(2)]. According to Algorithm 1, we have

C̃(2)T · C̃(2) =
I3∑

k=1

AkU
(2)U(2)T AT

k . (9)

Equation (9) is exactly equivalent to Equation (6). U(1) can
be found as the dominant subspaces of C̃(2)T · C̃(2).

Similarly we can obtain U(2) by solving the quadratic
expression f = ‖C̃(1) ×2 U2T ‖2, where C̃(1) = A ×1 U(1)T .
Using the matrix formulation, we obtain the unfolding ma-
trix of C̃(1) along the first mode as C̃(1) = U(1)T · A(1) =
[U(1)T ·A(:,1, :)U(1)T ·A(:,2, :) · · ·U(1)T ·A(:, I2, :)] since
A(1) can be represented as [A(:,1, :)A(:,2, :) · · ·A(:, I2, :)]
∈ R

I1×I2I3 . C̃(1)T is the column-permuted version of the un-
folding matrix of C̃(1) along the second mode. U(2) can then
be found from C̃(1), i.e., C̃(1)T = [AT

1 ·U(1)AT
2 ·U(1) · · ·AT

I3
·

U(1)]. According to Algorithm 1, we have

C̃(1)T · C̃(1) =
I3∑

k=1

AT
k U(1)U(1)T Ak. (10)
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Fig. 3 Illustration of rank-R approximations of tensors vs. generalized low rank approximation of matrices (GLRAM). Dimension R = 40 and
d = 40

Equation (10) is exactly equivalent to (7). U(3) can be found
as the dominant subspaces of C̃(1)T · C̃(1). �

The following corollary can be easily proved from Theo-
rem 2.

Corollary 1 Rank-one decomposition of matrices by Shas-
hua and Levin (2001) is a special case of GLRAM with
the same initialization in the sense that the best rank-
one approximation of the matrices can be iteratively ob-
tained by applying GLRAM. Rank-one tensor decomposi-
tion (Wang and Ahuja 2004) of A ∈ R

I1×I2×···×IN , i.e.,

A = ∑r
i=1 λiu

(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(N)
i (where λi is a constant

corresponding to the core tensor and u(j), (1 ≤ j ≤ N), is
a vector), is a special case of rank-R tensor approximation
algorithm in the sense that we iteratively find the best rank-
one tensor approximation of the original tensor.

Proof The rank-one approximation of matrices in (Shas-
hua and Levin 2001) is aimed at iteratively finding the best

rank-one approximation, Ak = ∑r
k=1 λiju

(1)
j u

(2)T

j , of a col-

lection of images (matrices), A1,A2, . . . ,AI3 . The term u(1)

is the eigenvector associated with the largest eigenvalue
of ÂT Â, where Â = [A1u

(2), . . . ,AI3u
(2)], while ÂT Â is

equal to
∑I3

i=1 Aiu
(2)u(2)T AT

i . Similarly the term u(2) is the

eigenvector associated with the largest eigenvalue of ÂÂT ,
where Â = [AT

1 u(1), . . . ,AT
I3

u(1)], while ÂÂT is equal to
∑I3

i=1 AT
i u(1)u(1)T Ai . These exactly define the rank-one ap-

proximation using GLRAM.
It is easy to show that rank-R tensor decomposition re-

duces to rank-one decomposition of matrices (Shashua and
Levin 2001) when the tensor is only projected onto the first
two subspaces, u(1) and u(2) according to Theorem 2. �

Claim 1 Rank-R tensor approximation algorithm using
Datum-as-Is representation implicitly encodes the covari-
ance between any pair of elements (pixels or voxels) in the
image or volume space.

Let us consider the aforementioned image ensemble,
which has I3 images with a resolution I1 × I2. If we rep-
resent each image as a vector as in PCA, the entire image
ensemble is represented as a matrix B ∈ R

(I1I2)×I3 . On the
other hand, if we represent each image as a matrix, we
need to factorize three unfolded matrices: A(1) ∈ R

I1×(I2I3),
A(2) ∈ R

I2×(I3I1), and A(3) ∈ R
I3×(I1I2). Note that A(3) is

actually the transpose of B. Suppose Ui is an eigenvector
of the covariance matrix of B. Then A(3)Ui is actually an
eigenvector of the covariance matrix of A(3). Because of this
relationship between A(3) and B, our approach indirectly en-
codes the covariance between an arbitrary pair of pixels in
the image plane. More importantly, we can show from Ob-
servation 2 that our scheme also encodes row and column
covariances by factorizing A(1) and A(2).

Therefore, our algorithm is more general than that pro-
posed by Ye (2005), since Ye considers the projection along
only the temporal axis while our algorithm achieves reduc-
tion along both spatial and temporal axes. Figure 3 contrasts
the different projection schemes used by these two ap-
proaches.

The relationship of the methods discussed above can be
represented as in Fig. 4.

4 Tenor Approximation of Third-Order Tensors
Using Slice Projection

Algorithm 1 is designed for approximating tensors of any or-
der. In this section, we consider the important special case of
image ensembles, which are third-order tensors. We present
a specific algorithm for any rank approximation of third-
order tensors, called slice projection.

Our approach is inspired by the work of Ye et al. (2004),
Ye (2005). The basic idea of slice projection for rank-R
approximation of tensors is similar to Algorithm 1 in that
a tensor is transformed into matrices for the convenience
of manipulation. In Algorithm 1, a tensor is unfolded along
different coordinate axes to formulate matrices, while here
a third-order tensor is represented as slices along the three
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Fig. 4 Relationship among four
methods: Tensor approximation
of tensors with Datum-as-Is
representation, generalized low
rank approximation of matrices
(GLRAM), rank-one
decomposition of tensors
(RODT) and rank-one
decomposition of matrices
(RODM). These methods are
related through two operations:
(i) partial projection and
(ii) iterative rank one
approximation

coordinate axes, Ai,Aj and Ak , where 1 ≤ i ≤ I1, 1 ≤ j ≤
I2 and 1 ≤ k ≤ I3. Each slice is represented by a matrix
orthogonal to that direction. By projecting the slices along
each direction to two corresponding coordinate axes under
the rank constraints, we can find the best approximation of
the original slices. We need to maximize the norm of the
best approximation of original tensor, which corresponds to
maximizing the summation of the norms of the slice pro-
jections in three directions. Then our problem is formulated
as follows: given a tensor A (hence Ai,Aj and Ak), find
U(1),U(2) and U(3) which solve

max
U(1),U(2),U(3)

I1∑

i=1

‖U(2)T AiU
(3)‖2 +

I2∑

j=1

‖U(1)T AjU
(3)‖2

+
I3∑

k=1

‖U(1)T AkU
(2)‖2 (11)

where U(1) ∈ 
I1×R1 , U(2) ∈ 
I2×R2 and U(3) ∈ 
I3×R3

have orthonormal columns; 1 ≤ i ≤ I1, 1 ≤ j ≤ I2, and
1 ≤ k ≤ I3. The following theorem describes how to find
a locally optimal solution using an iterative procedure.

Theorem 3 (Slice-Projection Theorem) Let U(1),U(2) and
U(3) be the optimal solution to the maximization problem in
(11). Then

• Given U(1) and U(2), U(3) consists of the R3 eigenvectors
of the matrix M31 = ∑I2

j=1 AT
j U(1)U(1)T Aj (and M32 =

∑I1
i=1 AT

i U(2)U(2)T Ai ) corresponding to the largest R3

eigenvalues.
• Given U(1) and U(3), U(2) consists of the R2 eigenvectors

of the matrix M23 = ∑I1
i=1 AiU

(3)U(3)T AT
i

(and M21 =
∑I3

k=1 AT
k U(1)U(1)T Ak) corresponding to the largest R2

eigenvalues.
• Given U(2) and U(3), U(1) consists of the R1 eigenvectors

of the matrix M12 = ∑I3
k=1 AkU

(2)U(2)T AT
k

(and M13 =

∑I2
i=1 AjU

(3)U(3)T AT
j ) corresponding to the largest R1

eigenvalues.

Given U(1), U(2) and U(3), the projection of A onto the co-
ordinate axes is represented as B = A × U(1)T × U(2)T ×
U(3)T .

Proof Given U1 and U2, U3 maximizes

max
U(3)

I2∑

j=1

‖U(1)T AjU
(3)‖2 and

I1∑

i=1

‖U(2)T AiU
(3)‖2. (12)

The first term in (12) can be rewritten as

I2∑

j=1

trace(U(3)T AT
j U(1)U(1)T AjU

(3))

= trace

(

U(3)T

(
I2∑

j=1

AT
j U(1)U(1)T Aj

)

U(3)

)

= trace(U(3)T M31U
(3))

which is maximal for a given U(1) only if U(3) ∈ 
I3×R3

consists of the R3 eigenvectors of the matrix M31 corre-
sponding to the largest R3 eigenvalues. From the second
term in (12), we obtain U(3) which maximizes
trace(U(3)T M32U

(3)). In either case, U(3) is locally opti-
mal for the maximization of (12). Similarly, we can show
other parts of the theorem. �

This theorem provides us with an iterative procedure
to find U(1),U(2), and U(3). By updating U(1),U(2), and
U(3) iteratively, the procedure will converge to a (local)
maximum of (11). This is described in Algorithm 2. The
advantage of Algorithm 2 is that it is time and memory effi-
cient for any rank approximation of third-order tensors since
the cost for finding the eigenvectors is only O(I 3

1 +I 3
2 +I 3

3 ),
but the tradeoff is that this algorithm only works for third-
order tensors.
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Table 2 Comparison of data
representation using different
methods

Method Image as Formulation Number of scalars

PCA (p) vector Ãi = � · Pi + A p(I1 · I2 + I3)

Rank-one (r ) matrix Ã = ∑r
i=1 λi · U(1)

i ◦ U
(2)
i ◦ U

(3)
i r(I1 + I2 + I3 + 1)

GLRAM (d) matrix Ãi = L · Di · RT d(I1 + I2 + I3d)

Rank-R (R) matrix Ã = B × 1U
(1) ×2 U(2) × 3U

(3) R(R2 + I1 + I2 + I3)

Algorithm 2: Rank-R approximation of third-order tensors

Data: Given a third-order tensor, A, and R

Result: Find Uk , (1 ≤ k ≤ 3) and B.

Initialize U
(k)
0 ∈ 
Ik×Rk , 1 ≤ k ≤ 3;

while ∼ stop do

M21 = ∑I3
k=1 AT

k U
(1)
j U

(1)T

j Ak ;

U
(2)
j+1 = svds(M21,R2);

M32 = ∑I1
i=1 AT

i U
(2)
j+1U

(2)T

j+1 Ai ;

U
(3)
j+1 = svds(M32,R3);

M13 = ∑I2
i=1 AjU

(3)
j+1U

(3)T

j+1 AT
j ;

U
(1)
j+1 = svds(M13,R1);

B = A×1 U
(1)T

j+1 ×2 U
(2)T

j+1 ×3 U
(3)T

j+1 ;

if (‖Bj+1‖2 − ‖Bj‖2 < ε) stop

end

5 Dimensionality Reduction and Feature Extraction

5.1 Dimensionality Reduction

Representation of the data using PCA consists of p eigen-
vectors, � ∈ R

I1I2×p and reduced representations P ∈
R

I3×p . Tensor rank-one decomposition (Wang and Ahuja
2004) consists of the projection λ corresponding to each
rank-one tensor U(1) ◦U(2) ◦ · · · ◦U(N). GLRAM (Ye 2005)
projects each image using two matrices L ∈ R

I1×d and
R ∈ R

I2×d , and the projection is D ∈ R
d×d . For rank-R ap-

proximation, a tensor is approximated by a core tensor B ∈
R

R×R×R and three subspaces U(1) ∈ R
I1×R,U(2) ∈ R

I2×R

and U(3)∈R
I3×R

. A comparison of these methods is given in
Table 2, where A is the mean of the data.

In image ensemble applications, the number of images
is usually much greater than the dimension d or R for di-
mensionality reduction, i.e., I3 � d and I3 � R. Therefore,
(I1 +I2 +I3d)d > (R2 +I1 +I2 +I3)R if we assume R = d ,
i.e., the representation of original data using rank-R approx-
imation is more compact than that using GLRAM. When
using image-as-vector representation, the rank-R approxi-
mation of a tensor reduces to SVD of a matrix.

5.2 Feature Extraction

Rank-R approximation of tensors can be used to extract
features of the image ensemble. By projecting the origi-
nal tensor data onto R1,R2, . . . ,RN axis system, we obtain
a new tensor. By projecting it to any combination of two axes
system, we define a feature of the slice along the plane de-
fined by the two axes. The projections of a third-order tensor
on any two axes are defined as Bxy = A× 1U

(1)T ×2 U(2)T ,

Byz = A×2 U(2)T ×3 U(3)T and Bxz = A×1 U(1)T ×3U
(3)T .

Given a test image, which can be represented as a tensor A
of size I1 × I2 × 1, the matrix B

B = A×1 U(1)T ×2 U(2)T (13)

can be used as a feature of the image. The feature extracted
using Rank-R approximation of tensors using image-as-
matrix representation is a matrix while that using SVD/PCA
is a vector.

6 Experimental Results

In this section, we experimentally evaluate the performance
of our proposed algorithm with respect to the quality of
representation, computational complexity, and efficacy in
object classification. The datasets we use include:

• Video dataset: It is a 129-frame video sequence of a mov-
ing toy. The size of each frame is 129 × 129. So we build
a third-order tensor of 129 × 129 × 129.

• Olivetti Research Laboratory (ORL) dataset:1 It contains
10 different images of each of 40 distinct persons. The
images were take at different times with different illumi-
nation and varying facial expressions. The size of each
image is 92 × 112. Therefore the dimensionality of the
dataset is 92 × 112 × 400.

• Yale face dataset:2 It is a widely used face database for
researchers in face recognition. It contains 165 images of
15 persons. Each person has 11 images with different il-
lumination, varying facial expressions and facial details.
The images are centered, aligned using eyes positions,

1http://www.uk.research.att.com/facedatabase.html.
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
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Fig. 5 The plot of ration vs. R for a video sequence, b ORL, c YALE

Table 3 Sensitivity to
initializations for the video
sequence

Initialization Iterations Convergence RMSE Computation time (s)

HOSVD 22 3563.000781 87.4150

[ IRn 0 ]T 15 3563.236328 25.8980

rand1 16 3563.235387 30.2940

rand2 15 3563.235388 29.7430

rand3 14 3563.235387 26.5880

rand4 16 3563.235388 30.3430

rand5 15 3563.235387 29.9540

and cropped to the size of 82 × 66. The eye positions
are provided by Ben Axelrod (http://www.facedetection.
com/downloads/YaleData.txt). The dataset has the size of
82 × 66 × 165.

Our experiments were performed using Matlab on a Pen-
tium IV 1.5 GHz machine with 512 MB RAM.

6.1 Determination of R

As in SVD, the singular values can be used to evaluate
how much variation the approximation of data can capture.
We employ a similar scheme by using the Frobenius-norms
‖Bn‖ as “singular values” of a tensor along the nth mode.
Rn can be determined by the ratio

ration =
∑Rn

j=1 Bin=j

∑In

j=1 Bin=j

.

According to the ordering property in Theorem 1, i.e.,
‖Bin=1‖ ≥ ‖Bin=2‖ ≥ · · · ≥ ‖Bin=In‖ ≥ 0 for all possible
values of n, ration captures the largest variation along the
nth mode.

Figure 5 is the ratio plot for three datasets. We can see
that ratio1 is very close to ratio2. This illustrates that the
rows and columns of each dataset have similar variations.

6.2 Sensitivity to Initialization

In this section, we evaluate the sensitivity of the rank-R ten-
sor approximation algorithm to three different initialization
schemes: (1) HOSVD, (2) U

(n)
0 = [IRn 0 ]T , and (3) U

(n)
0 =

uniformly distributed random numbers. We compared the
number of iterations for convergence and computational
time using different initialization schemes using different
datasets.

We used R = 10 for all three datasets with the specified
threshold (ε = 10−6). The results are given in Tables 3, 4,
and 5 for three datasets. Generally speaking, using HOSVD
usually obtains a little bit better locally optimal solution than
the other two schemes, but it is much more expensive com-
putationally. However, we can see from the tables that the
difference is not significant among the convergence RMSEs
obtained using different initialization schemes. From our
experience with extensive experiments using different im-
age/video datasets, simple initialization using scheme (2) or
(3) can practically obtain good results for image processing
and computer vision applications.

6.3 Compact Data Representation

We applied PCA, GLRAM, rank-one decomposition, and
rank-R approximation of tensors methods on different
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Table 4 Sensitivity to
initializations for the ORL
dataset

Initialization Iterations Convergence RMSE Computation time (s)

HOSVD 6 2590.507936 248.8580

[ IRn 0 ]T 9 2590.508057 30.0430

rand1 11 2590.507936 39.3470

rand2 9 2590.507936 32.3960

rand3 9 2590.507936 32.1460

rand4 10 2590.507936 36.0310

rand5 11 2590.507936 39.2770

Table 5 Sensitivity to
initializations for the YALE
dataset

Initialization Iterations Convergence RMSE Computation time (s)

HOSVD 8 1531.010022 23.6130

[ IRn 0 ]T 13 1531.009766 11.1960

rand1 11 1531.010022 10.3550

rand2 10 1531.010022 9.3730

rand3 11 1531.010022 10.2040

rand4 11 1531.010022 10.2940

rand5 10 1531.010022 9.4140

datasets. For third-order data, HOSVD using image-as-
vector representation is equivalent to PCA. It is also shown
in (Wang et al. 2005; Vasilescu and Terzopoulos 2003)
that for higher-order data, the reconstruction error is larger
for higher-order decomposition of tensors using image-as-
vector representation than PCA. We focus on third-order
tensors in this paper, though the algorithm can be general-
ized to higher-order data.

The parameters we used to achieve a constant compres-
sion ratio for different algorithms are given in Table 2. The
compression ratio is defined as α = I1×I2×I3

s
, where s is the

number of scalars required for representation of the data (see
Table 2). Though we can utilize the orthonormality property
of columns of basis matrices to further reduce the storage for
an n × r orthonormal matrix, the bookkeeping to achieve is
tedious, and for n � r the difference is small. We therefore
does not consider this aspect here. We compute the RMSE
error of the reconstructed data with respect to the original
data,

RMSE =
√

1

I3
‖A− Ã‖2

as a measure of relative performance of the algorithms.
Figure 6(a)–(c) shows the reconstructions obtained us-

ing the same compression ratio but different representation
methods. For the toy sequence (Fig. 6(a)), the temporal re-
dundancy is very strong since the scene does not change
much from frame to frame, though spatial redundancies also

exist. Interestingly, the reconstruction using GLRAM is vi-
sually even worse than that using PCA. The reconstruction
using GLRAM is very blurry, and has some features (e.g.,
eyes) missing (Fig. 6(a2)). This is because GLRAM cap-
tures more redundancies in the spatial than in the temporal
dimension, while PCA captures mostly the temporal redun-
dancies in this case. The reconstructions are much better for
tensor rank-one decomposition and rank-R approximation
methods since both methods capture the redundancies in all
dimensions. Moreover, since the basis columns of rank-R
approximation are orthonormal (therefore more compact),
rank-R approximation of tensors yields much better recon-
struction than tensor rank-one decomposition. For the face
datasets (Fig. 6(b), (c)), PCA is the worst among all meth-
ods since the spatial redundancies are not well captured due
to its image-as-vector formulation. The critical features like
eyes, mouth and nose begin to appear in Fig. 6(b2), (b3),
and become pretty clear in Fig. 6(b4). For the compression
ratio α = 77 : 1 (corresponding to using five principal com-
ponents for PCA), the reconstruction using our algorithm
(Fig. 6(c4)) is visually quite close to the original image
(Fig. 6(e)). Figure 6(d)–(f) shows the reconstruction error
for each dataset. These plots are consistent with the relative
visual quality of the reconstructions. Our algorithm pro-
duces the best visual reconstructions as well as the smallest
RMSE of all methods. As the compression ratio decreases,
all four methods give similar performance. This is reason-
able since the use of increasing number of components leads
to steadily decreasing amount of information loss.
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Fig. 7 Comparison of Algorithm 1 and Algorithm 2. a Number of iterations for convergence. b Execution time. c Reconstruction error

Fig. 8 Comparing the quality
of representation of the different
methods on face recognition for
the Yale and ORL face datasets.
a Accuracy vs. compression
ratio on Yale. b Accuracy vs.
compression ratio on ORL

6.4 Computational Efficiency

We compared Algorithm 1 and Algorithm 2 in terms of
number of iterations for convergence (Fig. 7(a)), execu-
tion time (Fig. 7(b)) and RMSE error (Fig. 7(c)) for the
video sequence dataset. The threshold we used is ε = 10−4.
Figure 7(a) shows that Algorithm 1 usually takes more
iterations to converge to a locally optimal solution than
Algorithm 2, which often costs more time as shown in
Fig. 7(b). For Algorithm 1, we also compared the execu-
tion time for both efficient and inefficient cases. Algorithm 1
with inefficient implementation is much slower than effi-
cient implementation as R increases due to large memory
requirements. The RMSE representation errors are compa-
rable for both Algorithms as shown in Fig. 7(c).

6.5 Appearance-Based Recognition

To evaluate the quality of the representation obtained by
our algorithm, we applied it to appearance-based recogni-
tion in face images in ORL and Yale face databases. For
the Yale database (containing 11 different images of each of
15 distinct persons), we used 11-fold cross-validation; i.e.,
we randomly selected 10 images per person, and used the

remaining 1 for testing. For the ORL face database (con-
taining 10 different images of each of 40 distinct persons),
we applied 10-fold cross-validation. Similarly, we randomly
selected nine images from each class as a training set, and
used the remaining image for testing. For each database, we
repeated the process 10 times. Features can be obtained us-
ing (13). The face is correctly classified if its feature has
the minimum Frobenius distance from the features of the
same person. The reported final accuracy is the average of
the 10 runs.

We compared our algorithm with GLRAM and PCA. As
shown in Fig. 8, comparing the performance of different
methods for a fixed compression ratio, our method yields
the highest accuracy in every case (Fig. 8). This shows that
our algorithm has the best reduced dimensionality represen-
tation.

7 Conclusion

We have introduced a new approach to dimensionality re-
duction based on multilinear algebra using Datum-as-Is
representation. The method is designed to capture the spa-
tial and temporal redundancies along each dimension of the
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tensor. Experiments show superior performance of rank-R
approximation of tensors in terms of quality of data rep-
resentation and object classification accuracy for a fixed
compression ratio. In the future, we will consider integrating
other spatial bases, for example the Fourier basis, to encode
spatial redundancy in general images.
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