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Abstract

We show that the approaches to 3D reconstruction that
use volumetric graph cuts to minimize a cost function over
the object surface have two types of biases, the minimal sur-
face bias and the discretization bias. These biases make it
difficult to recover surface extrusions and other details, es-
pecially when a non-lambertian photo-consistency measure
is used. To reduce these biases, we propose a new iterative
graph cuts based algorithm that operates on the Surface
Distance Grid (SDG), which is a special discretization of
the 3D space, constructed using a signed distance transform
of the current surface estimate. It can be shown that SDG
significantly reduces the minimal surface bias, and trans-
forms the discretization bias into a controllable degree of
surface smoothness. Experiments on 3D reconstruction of
non-lambertian objects confirm the effectiveness of our al-
gorithm over previous methods.

1 Introduction

Many multiple view 3D reconstruction methods are for-
mulated as energy minimization problems [4, 7], which try
to minimize the surface integral of a certain cost function.
This formulation sets a generic framework where differ-
ent minimization techniques can be applied. Under this
framework, global optimization methods such as graph cuts
can achieve a high quality reconstruction [14, 15]. How-
ever, this formulation and its discrete implementations us-
ing graph cuts have structural biases, e.g., certain types of
surfaces are more likely to be selected as the optimal sur-
face. These biases are more noticeable on noisy cost func-
tions, such as those based on the non-lambertian photo-
consistency measure [7]. These biases limit the algorithm’s
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capability to recover surface details and extrusions. In this
paper, we analyze the two types of biases of previous meth-
ods, and propose a method that we call the Graph Cuts on
Surface Distance Grid, which is formulated in discrete do-
main and significantly reduces these biases.

According to how 3D shape is represented, reconstruc-
tion methods can be roughly divided into two categories:
those represented as a depth image and those represented
as a 2D surface embedded in 3D space. Depth image rep-
resentation is mostly used for small number of views, and
has received extensive attention [11, 8]. The surface rep-
resentation allows more accurate visibility reasoning and
is more suitable to handle datasets with large numbers of
views. These methods include voxel coloring/space carving
[12,9, 16], variational/level set methods [4, 7, 13] and graph
cuts [14, 15]. The classic voxel coloring/space carving ap-
proaches suffer from the hard decisions of voxel removal at
each step that affect the subsequent reconstructions. Energy
minimization formulation in level set or graph cuts based
methods postpones these hard decisions so that a trade-off
can be made with respect to the entire surface. Level set
methods embed the minimization of the surface integral into
the evolution of the level set of a 3D function, which also
handles topological changes. Graph cuts based methods ap-
proximate the surface integral using a discrete cost function
defined on a regular 3D grid and a globally optimal result
can be obtained via s-t min-cut algorithm [2]. As shown in
Section 2, both of these methods have biases toward certain
types of surfaces.

Our paper is also related to the 3D reconstruction of non-
lambertian objects which pose a significant challenge to
many algorithms. Different approaches such as photomet-
ric stereo [6, 5], photometric stereo combined with multiple
views [3], shape from shading [10] and Helmholtz Stereop-
sis [17] have been proposed. These methods usually make
strong assumptions about the illumination and/or surface re-
flectance. For a more generic photo-consistency measure,
Yang et al. [16] propose LMF (Line-Model-Fitting), which
imposes the constraint that pixels from the same surface



point should form a line in RGB color space. But this mea-
sure requires known illumination color. Our paper modifies
the photo-consistency measure proposed by Jin et al. [7],
which is a rank constraint on the radiance matrix formed
by neighboring surface points. This measure does not re-
quire illumination or surface reflectance to be known and
therefore can be applied in more situations. It, however,
has surface shape and texture dependent fluctuations which
amplify the structural bias problems of the reconstruction.
Soatto et al. [13] propose to partially solve the bias problem
by using the integral of the cost function over the input im-
ages instead of the object surface. In this paper, we propose
a new discrete formulation to alleviate these biases.

This paper is organized as follows. We first discuss two
types of structural bias for 3D reconstruction using graph
cuts on regular volume grids (Sec. 2). Then we propose
the Surface Distance Grid (SDG) and our discrete formu-
lation of the reconstruction problem (Sec. 3). We present
experiments on two real datasets to show the advantages of
our algorithm (Sec. 4). Finally, we present conclusions and
future research directions.

2 Structural Biases of Graph Cuts on Regu-
lar Volume Grid

In the recently proposed Graph Cuts based methods for
3D reconstruction [15, 14] or volume segmentation [1], the
problem is formulated as minimizing a surface integral of
certain photo-consistency measure inside a search volume.
A discrete 3D grid is constructed whose cut is used to ap-
proximate the surface integral. A global minimum is found
using the s-t min-cut algorithm [2]. However, there are two
structural bias problems associated with these methods.

2.1 Minimal Surface Bias

The formulation of 3D reconstruction as minimizing a
surface integral has an intrinsic bias toward surfaces with
smaller area. This can be shown from the cost function:

o) :/FM(x,n)dA (1

where M is the photo-consistency measure at each location
x and local surface orientation n. The cost function C(T")
is the surface integral of M. Clearly, for two surfaces with
the same nonzero average photo-consistency M, the surface
with smaller area will have smaller total cost. This bias can
be neglected only when M is close to zero on the optimal
surface, since the integral of zero on any surface is still zero.
This bias is not restricted to graph cut based methods. Any
method that uses this minimal surface integral formulation
(such as the level set based methods) will have the same
problem. Sometimes this property is used to regularize the
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Figure 1. Deviation from Euclidean Dis-
tance for Edge Cut and Node Cut algo-
rithms. (a) E-Cut: Dgy,.iq: AB=4, ACB=2 x
V22 + 32=7.21, D¢y : AB=4, ACB=9 (note the
double counted edge near C). Bias toward
AB (b) N-Cut: Dg,.;q: DF=41/2=5.66, DEF=8,
Dchess: DF=4, DEF=8. Bias toward DF.

solution by adding a positive offset to M, which will bias
the surface toward smaller overall area to reduce noise. The
mean curvature based flow in level set methods is an exam-
ple [7]. On the other hand, this bias will try to cut out sharp
corners or extrusions, as observed by Vogiatzis et al. [14].

In real applications, various noises or imperfections of
the consistency model almost always make M shift from
zero on the true surface, and therefore create an effec-
tive regularization offset. We will show an example of
the non-lambertian photo-consistency measure in Section
4.1. Soatto et al. [13] propose to integrate the consis-
tency measure over all the input images instead of on the
object surface to reduce this bias. Their approach shows
some improvement, but still has the bias toward surfaces
with smaller silhouette area on the input images. This prob-
lem is also more prominent when graph cuts are used, since
a global optimal solution is reached in the search space in-
dependent of the initial condition. A “balloon” force is used
in [14] to prevent Graph Cuts from taking “shortcuts”, but
at the risk of inflating the concave regions.

2.2 Discretization Bias

The second type of bias comes from the approximation
of the continuous integral in (1) by a discrete cost function.
Volumetric graph cut methods construct a graph G = (V, )
based on a regular volume grid. Depending on the imple-
mentation, the photo-consistency measure can be put as the
weights of edges £ [14, 1] or nodes/vertices V [15]. We re-
fer to these two type of methods as Edge Cut and Node Cut
methods, respectively. The cost function is approximated
by the cost of a cut, which is the summation of edge/node
weights to be removed in order to partition the graph into
two subgraphs S (connected to source s) and 1" (connected
to sink ¢). For Edge Cut, the cost function is
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Figure 2. Discretization bias for Edge Cut and Node Cut reconstruction algorithms. (a) The cost
function M, = (|| x || —0.6)> + d,fs..: pPlotted with respect to the distance to the origin (center of the
sphere). (b) Optimal surface by Edge Cut with d.;¢..: = 0. (c) Optimal surface by Edge Cut with
dorrser = 0.005. Recovered surface shows bias that is parallel to the grid. (d) Optimal surface by
Node Cut with d,;rs.: = 0. (e) Optimal surface by Node Cut with d,;;,., = 0.005. Recovered surface

shows bias that is diagonal to the grid.
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For Node Cut, the cost function is

Co(S,T) = Y. () 3)

vgS,wgT,veV

where ¢; (u, v) is the weight of edge e, and ca(v) is the
weight of node v.

Boykov and Kolmogorov [1] discuss the optimal weight
assignment for Edge Cut algorithms to approximate the
surface integral in Euclidean space. They show that both
a larger neighborhood system and a smaller grid size are
needed in order to better approximate the integral. Due
to various implementation reasons, recent volumetric graph
cut methods often use the minimum 6-neighbor connectiv-
ity, which has very strong bias. For the 6-neighbor connec-
tivity, the approximated distance for Edge Cut is the City
Block Distance (4), and for Node Cut it is the Chessboard
Distance (5):

Dcity |z — 21|+ ly2 — 1| + |22 — 2] D)
Dchess = max(|za — x1], |y2 — y1l, |22 — z1]) 5)

Fig.1 shows two examples of deviations from euclidean
distance for 2D cases. In an edge capacitated graph (a),
D¢ty for AB is equal to Dgyciia, but for ACB, Dcyyy is
greater than Dpgy.;4. This effectively gives a bias toward
cuts that are parallel to the volume grid. Similarly, a node
capacitated graph (b) results in a bias toward cuts that are
diagonal to the volume grid.

This bias becomes stronger if the minimum of the cost
function is away from zero. The effects of the discretization
biases on 3D reconstruction can be further illustrated in the
following simulation. We use an isotropic cost function

Mi(x) = (| x || =0.6)* + dog et (6)

in a working volume (z,y,z) € [—1,1] (Fig.2a). Where
|| x || is the distance from x to the origin. dofysse: 1S a pa-
rameter used to control the regularization offset. Clearly,
M reaches its minimum at the sphere surface || x ||= 0.6.
We build a grid with 6-neighbor connectivity and assign
each edge (or node) the value of M at that location. We
use the s-t min-cut algorithm [2] to find the optimal Edge
Cut (or Node Cut) that minimizes the total cost defined in
(2) (or (3)) . For both algorithms, all the nodes with norm
||  ||]< 0.3 are connected to the sink node ¢, and those with
norm || = ||> 0.9 are connected to the source node s. The
ideal result for the continuous case is a sphere with a radius
around 0.6 2. The result for the two algorithms with differ-
ent d, fser values are shown in Fig.2. For dy fse¢ = 0 both
algorithms obtain a nice approximation of the sphere. But
with a slight increase of d, ¢sct, the discretization bias ef-
fect for the two algorithms becomes clearly visible. The ar-
tifacts are strong enough to remove many surface details in
the reconstructed shape. Note that these biases can only be
reduced by using both a larger neighborhood and a denser
grid at the same time, which will significantly increase the
graph complexity 3.

3 Graph Cuts on Surface Distance Grid

To deal with the two types of biases, we propose the
Graph Cuts on Surface Distance Grid algorithm, or SDG
Cut. It is formulated as finding the minimum of a discrete
cost function defined on the Surface Distance Grid (SDG).

IFor Node Cut, the graph has to be converted to another edge capaci-
tated graph before minimization [15].

2Due to the minimal surface bias, the optimal surface is a sphere with
radius smaller than 0.6 when dyf f st 7 0

3The graph complexity can be estimated as O[(n *m)?] where n is the
number of nodes in one dimension and m is the m-ring neighborhood.



Figure 3. Left: The initial surface of a fish
sculpture constructed by silhouette cone in-
tersection. Right: The inner most layer of the
Surface Distance Grid (shaded surface) and
the vertex trajectories from a dilated initial
surface (colored lines). For better visualiza-
tion, only 1/3 of the trajectories are shown.

3.1 Surface Distance Grid

Surface Distance Grid is constructed from the signed dis-
tance transform of an initial surface. The signed distance
transform Dr(x) : R® — R of a surface I is defined as:

_ minger | x —p |, if xisoutside’
Dr(x) = { — minger | x—p|,if xisinsideT
(N
where || - || is the Lo norm and p is a point on the surface I.

The steps in constructing a SDG are as follows:

a. Start with an initial surface I'y. Compute its signed
distance transform D, (x) inside a working volume.

b. Choose an initial distance d; > 0 and extract a trian-
gular mesh G; = (V1, &;) from the level set Dr, (x) = dy,
whose vertices are V; and edges are £1. G is used as the
outermost layer of the SDG.

c. Consider each vertex v in V;, move it along the neg-
ative gradient of Dr,(x), and place k points at a spacing
of Ad on the moving trajectory. These are the candidate
points for v in the search space. The candidate points of all
vertices form the Surface Distance Grid.

d. At each candidate point, a photo-consistency measure
is computed. If a normal is needed for the computation,
it can be approximated by the gradient of Dr,(x) at that
location.

Clearly, as long as d; — kAd < 0, the SDG will be a
k + 1 layer point cloud that occupies a dilated band around
the initial surface I'y. Fig. 3 shows an example of vertex
trajectories we created from an initial surface.

3.2 3D reconstruction using Graph Cuts
on SDG

For each vertex in V;, we want to select one correspond-
ing candidate point, such that the sum of photo-consistency

Vertex
Trajectories

Add
horizontal

Initial

Surface Distance Grid
Candidate points
map to vertical edges

Source Node

Figure 4. Converting a Surface Distance Grid
to an edge capacitated graph G, to find the
optimal subset of candidate points.

measure of selected candidate points is minimized. We
compute this optimal subset of candidate points by ap-
plying the s-t min-cut algorithm on an edge capacitated
graph Go, with each edge corresponding to a candidate point
and each vertex representing the link between consecutive
candidate points on the trajectory (Fig.4). These edges
are called “vertical edges” and their weights W) are the
photo-consistency measures of the corresponding candidate
points. There are also vertices at two ends of each trajectory
with infinite-weight edges to the source s and sink ¢.

With only vertical edges, a minimum cut on G» can actu-
ally be obtained by choosing the minimum weight edge for
each trajectory. There are no interactions between neigh-
boring trajectories in this case. To impose certain smooth-
ness constraint, we add “horizontal edges” to each layer of
vertices in Go, with the same connectivity as the original
mesh G;. Fig.4 illustrates the whole conversion process.
The weight va of a horizontal edge with u and v as two
end nodes is:

Wl = WY + W) «lo/Lu (8)
WY =Wy +wy)/2, WY=WY+W.)/2 9

where a,b are two vertical edges connected to u and ¢, d
are two vertical edges connected to v. L., is the length of
the corresponding edge wv in the mesh G;. In (8), the hor-
izontal weight va is set to be inversely proportional to
L., so that longer edges in G; are easier to cut. This is be-
cause the vertices of longer edges are further apart and less
likely to be in the same layer. [y is an adjustable constant
that controls the amount of regularization we want to apply.
The larger [y is, the higher the cost for a cut to jump from
one layer to another. This regularization tries to make the
resultant surface remain parallel to the initial surface.

Our problem can now be formulated as that of finding a
cut that can separate G- into two subgraphs S (connected
to source s) and T (connected to sink t), and minimize the
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Figure 5. Overview of the graph cuts on Sur-
face Distance Grid reconstruction algorithm.
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The candidate points corresponding to the vertical edges
in the minimum cut are the vertices on the reconstructed sur-
face. We connect them using the connectivity of G; to form
anew surface and compute a new signed distance transform.
The algorithm can be implemented in multiple iterations
with different layer spacings Ad so that surface details can
be progressively recovered. Due to the global optimality
of graph cuts, very few iterations are needed for the algo-
rithm to converge in practice. The overall reconstruction
algorithm is summarized in Fig.5.

3.3 Properties of the Surface Distance
Grid

SDG can be thought of as a surface dependent discretiza-
tion of the 3D space, instead of the regular grid discretiza-
tion used in [1, 14, 15]. It has several unique properties:

Reduced minimal surface bias: Any valid cut of G,
has to intersect each vertex trajectory at least once, other-
wise there is a link from source s to sink ¢ through that ver-
tex trajectory. This implies that all valid cuts with no more
than one intersection with each vertex trajectory contain the
same number of vertical edges. Among these surfaces, re-
gardless whether the cut is at the outermost layer or the in-
nermost layer, their total costs are not biased toward smaller
surface areas (Fig.6). One can think of this as the SDG cre-
ating a distortion field where surfaces in the smaller area
layers are expanded to have the same “discrete area” as the
other layers.

Surface dependent discretization bias: Although we
cannot remove the discretization bias in SDG, we move the
bias toward surfaces that are parallel to the level set of the
signed distance transform Dr, (x). If the initial surface car-
ries some information about the actual shape, e.g., those re-
constructed using silhouette cone intersection, then our bias

Figure 6. A 2D example of different cuts on
SDG. Although Cut 1 and Cut 2 have different
euclidean lengths, they have the same num-
ber of candidate points. Therefore there is no
minimal surface bias toward Cut 1.

becomes more reasonable than in the Edge/Node Cut case,
where surfaces parallel/diagonal to the volume grid are pre-
ferred. In addition, this bias can be controlled by adjusting
the global weighting parameter ly. It becomes the surface
smoothness constraint in our algorithm. Besides, the search
range and reconstruction details of SDG can also be con-
trolled through d;, k and Ad.

Visibility propagation: To compute the photo-
consistency measure we need to know the visibility of each
candidate point in the input images. In our implementation,
we compute the vertex visibility of the outer most mesh G;
using a hidden surface removal algorithm, and assign the
same visibility to all the corresponding candidate points.
This can be viewed as propagating the visibility along the
negative gradient of the signed distance transform, which is
very similar to the approach used by Vogiatzis et al. [14].

Non-crossing vertex trajectories: The vertex trajecto-
ries follow the negative gradient direction of the signed dis-
tance transform Dr,(x). It is impossible for two trajec-
tories to cross each other, which means we only need to
connect the selected candidate points using the same con-
nectivity as in Gy to get a new mesh.

Note the first three properties make the energy function
more dependent on the initial surface I'g. Therefore we rec-
ommend to initialize SDG cut close to the true surface. A
surface from silhouette cone intersection is usually enough
as shown in the next section.

4 Experimental Results

4.1 Photo-consistency Measure for Non-
lambertian Surface Reconstruction

We modify the non-lambertian photo-consistency mea-
sure proposed by Jin et al. [7] to create a stricter consis-
tency check. According to [7], the radiance matrix R(x, n)
of a surface point x with normal n must satisfy a low-rank
constraint under the assumption of distant illumination. A
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Figure 7. (a) The radiance matrix R(x, n) with
k images and m sample points to compute
the non-lambertian photo-consistency mea-
sure. (b) Plot of the photo-consistency mea-
sure over the ground truth surface (left) and
the initial surface of the Van Gogh dataset
(right). Data fluctuation is clearly visible.
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photo-consistency measure Mp(x,n) : R? x R® — R
can be defined as the norm of the low rank approximation
residue matrix of R(x,n). R(x,n) is constructed by pro-
jecting a set of sample points on the tangent plane at x to
the visible images and arrange the samples into a matrix
where each column corresponds to values of the same sam-
ple point and each row corresponds to values from the same
input image (Fig.7 (a)).

Our modifications to the photo-consistency measure are:

1. For each column of a radiance matrix, we subtract
out its median value, which is the estimate of the diffuse
radiance, so that the matrix will be focused on the energy of
the specular reflections.

2. For color images, we stack the radiance matrix of
different bands along the row (samples) direction (Fig. 7)
to create a single matrix for partial SVD factorization. This
is equivalent to treating values of different color bands as
arising from different sample points on the same tangent
plane. The rank constraint is still valid if all the light sources
have the same color, which is true in most situations.

3. After computing the low rank approximation residue
matrix, we use a norm that is the mean of the absolute
value of the matrix entries as the photo-consistency mea-
sure, instead of the original squared Frobenius norm. This
is mainly for reducing the noise effects caused by the out-
liers of the low rank model (e.g. areas with high curvature).

For all the experiments in this paper, we choose the rank
of the approximation matrix as 2. The normal n in R(x, n)
is approximated by the normalized gradient of Dr,(x) *
Fig. 7 (b) shows a plot of the photo-consistency measure we
used over the ground truth surface of the Van Gogh dataset
and the initial surface constructed by the silhouette cone in-

4This normal might not be the true normal on the surface, but after sev-
eral iterations of SDG Cut the approximation will become more accurate.

tersection. As mentioned in [7], the rank constraint is only
a good model for flat surfaces. In Fig. 7 (b), we can observe
that the consistency measure in high curvature areas shows
a large deviation from the model, which causes high fluctu-
ations even on the ground truth surface. These fluctuations
will trigger the two bias problems discussed in Sec. 2.

4.2 Reconstruction Results

We use two real datasets to test our SDG Cut algorithm.
The Van Gogh dataset is provided by Jean-Yves Bouguet
and Radek Grzeszczuk (Intel Corp.). It has more than 300
calibrated images of a Van Gogh statue with strong specu-
larities. Ground truth shape is obtained by structured light
scanning. 25 sparsely distributed images are used in our
experiments (Fig.8 a,b).

The initial surface reconstructed from silhouette cone
intersection is shown in Fig.8(c). Due to surface concav-
ity, many detailed features are not recovered. We perform
two iterations of SDG Cut. In the first iteration we gener-
ate the SDG within the range of level set Dp, = —6 and
Dr, = 3, which is about 1/20 of the statue height (Fig.8
d). The search range is Dr, = —3 and Dr, = 3 in the
second iteration. Both iterations have 16 layers of candi-
date points. We set [p to 0.2Ad. To compare the recon-
struction result, we apply the Edge Cut [14] (without the
balloon force term) and the Node Cut [15] algorithm to this
dataset. Since both of the original algorithms assume lam-
bertian surface, we replace their photo-consistency measure
with our non-lambertian consistency measure. The initial
surface and search range are kept the same as SDG Cut.
The reconstructed surfaces are compared in Fig.8 (e-h). The
discretization bias caused by the photo-consistency measure
fluctuation is clearly visible in Fig. 8 (e,f).

The Fish dataset contains images of a ceramic fish illu-
minated by two light sources (more than 600 calibrated im-
ages with ground truth shape) 3. Again, 25 images are used
in the experiment (Fig.9 a,b). This dataset is quite chal-
lenging due to several thin parts, e.g., the fins and the tail.
They are easy to get “cut” by the minimal surface bias. We
perform three iterations of SDG Cut. Each SDG has 16
layers and the search range can be seen in Fig.3 (b) by the
length of the vertex trajectories. Fig.9 (c-e) compares our
reconstructed result with the initial surface and ground truth
surface. Fig.9 (f) shows the results of Edge Cut and Node
Cut using the same consistency measure, initial surface and
search range, together with the result obtained by Soatto et
al. [13] on the same dataset. Our result shows much better
preservation of the thin features around the fins.

For both experiments, the SDG runs at 5-10 min/iteration
on a P4 2.8GHz with mixed matlab/C code. The majority
of the time (> 75%) is spent on computing the consistency

Shttp://grail.cs.washington.edu/projects/slf/



Figure 8. Van Gogh dataset. (a) 3 of the 25 input images (b) The camera distribution. (c) Initial
surface from silhouette reconstruction. (d) The outermost layer (transparent) and innermost layer
(opaque) of SDG. (e) Shape reconstructed by Edge Cut. (f) Shape reconstructed by Node Cut. (g)
Shape reconstructed by SDG Cut. (h) Structured light scanned shape.

(d) (e) ®

Figure 9. Fish dataset. (a) 3 of the 25 input images. (b) The camera distribution (c) Initial shape from
silhouette reconstruction. (d) Shape reconstructed by SDG Cut. (e) Structured light scanned shape.
(f) Reconstructed surface by Edge Cut (left), Node Cut (middle) and by Soatto et al. [13] (right). Tail
and fins are prone to be cut due to the minimal surface bias.



Table 1. Volume difference ratio
AVol/Vol(S,) for Silhouette Intersection,
Edge Cut, Node Cut, SDG Cut results and
those reported by Jin et al.[7]. (1) Van Gogh
dataset. (2) Fish dataset.

Initial | E-Cut | N-Cut | SDG Cut | Jin et al.[7]
1| 8.4% 9.1% 7.6% 4.0 % 5.7%
2| 15.6% | 15.0% | 14.5% 7.6 % N/A

measure, which must also be done in any other methods. To
evaluate the reconstruction results quantitatively, we com-
pute the volume difference between ground truth and the
estimated surface. The difference AV ol is defined as:

AVol = Vol(Seat | ] Sgt) = Vol (Sest [ Sge) — (11)

where S, is the estimated surface and Sy, is the ground
truth surface. The ratio AVol/Vol(S,) for different al-
gorithms is listed in Table.1. Due to the biases, Edge Cut
can sometimes perform even worse than the initialization °.
For Van Gogh dataset, our algorithm also improves on the
result reported in [7]. Note that although visually the sur-
face reconstructed by the level set method usually appears
smoother, it still suffers from the minimal surface bias. Our
algorithm works better in preserving the edges and corners,
which results in a lower volume difference.

5 Conclusions and Future Work

We discussed the two types of biases, the minimal sur-
face bias and the discretization bias, associated with the cur-
rent volumetric graph cut reconstruction algorithms. We
proposed to reduce these biases by applying graph cut
method on the SDG. SDG is constructed from the signed
distance transform of an initial surface. It can be shown
that for surfaces with no more than one intersection with
each vertex trajectory of SDG, the optimal cut has no min-
imal surface bias. SDG also transforms the discretization
bias into a controllable degree of surface smoothness. By
applying the Graph Cuts on SDG we can obtain robust re-
construction under fluctuating photo-consistency measure
of non-lambertian reflectance. Experimental results on two
real datasets show the effectiveness of our algorithm.

The current SDG Cut algorithm cannot handle topology
change. However, the change is possible between two SDG
Cut iterations, by using more flexible mesh to signed dis-
tance transform conversion. We plan to investigate further

Performance worse than the initial surface estimate is possible since
these methods search for global minimum and are not affected by the ini-
tialization. The only constraint from the initialization is that the result
should be within a pre-specified distance from the initial surface.

on this. Also, our algorithm is not restricted to surface re-
construction. It can be applied to other reconstruction prob-
lems such as shape from shading and volumetric image seg-
mentation.
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